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Sysem of linear algebric equatiom ns be solved at chb intepatlm moep in all coum.

amany used methods for the numerical solution, of sstem ot stiff Wh-f Cr ODs. Fro-

qontl. a substantial portia of the total computationskwok and cooap required! to solve

stiff IMs is devoted to moiving then linear algebraic "awm, psrtimlarly If the system are

larg. Over she pu decade, srl effcient itertie methods have bean developed to salve

large @pan* (noasymmetri) sletents of linear algebraic equtioms. Vft study the use of a dome

of then iteratve umtods in codes for stiff IM~s &i theoretical estimates and preliminary

numetical results show that the use of Iterative linear-equatlon solver, in miff-ODE codes

imroe the effliiecy.- in term of both computational-work and storag - with which a

ignileat clms of stiff WI.f having large spar. mbian can be solved

IAce Ion~ For
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As Gear D3. 361 and many others have noted. a major open problems in scientifc cm-

Putiag is the efficient solution of large systms of stiff initial-value problems (MVh) for ordi-

am differential equations (ODEs) of the farm

A$() - f (100a) A(re) - ye.(.

These problems aris other directly in models of physical system (such as chemical kinets, or

electrical networks) or indirectly a a step In the solution of another problem (such as the

application of the inethod-of-lnes, to a system of Parabolic partial differential equation [39D.

Consequently, the etfiient solution of lare system of stiff rIth in of ipeat practical impor-

Although several authors have investigated techniques for avoiding Implicitese i the

numerica solution of stiff 114116 most workers in the field still apee with Stetter's cmment

* ~[NJ that all reasm"bl methods for stiff sysem of OD~s have to be implidt, exep, possl-

bly, foreciadalms of problem. That is% a syste of linewat o nonlinear algebrac equa-

tion mumt be solved at auk step of the numerical integmtato. Moreover, it seem that a

Newton-like method must be used to solve the nonlinear systems to avoid a severe restriction

on the Ssi. Consquntly, large systems of linear equationua be solved in this case as

As we explain in m oe detail in 14. frequently a substantial portion of the total

omputadional-wouk and storag required to solve larg systm of stiff 1111h Is devoted to

solving systems ot linear algebraic equations. Therefore, mny improvement In the efficiency

with whic these linear system are solved will directly improve the perfornumato the

Integrator. Fortunately. the ginar Algebraic systems that arine in larg "awm of stiff IM?

we usuay sparme and this property can be exploited to great advantage.

* Over the pas decade, several efficient Iterative methods have been developed to solv

larg sparse system ot lnear algebraic equations. The Wryow subspace methods. at which the

onjugate gradient method [431 is a mall-know ezuze, have prove to be particularly
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efecti for solving the linear stwem that &ise in the numerical solution of ellitic and par.-

bolls paria dIfferential. equations. (See,.( fora-lW. [M 101M,14.,16.17. 24.42. 54.55. $7.

0. 61, 61,0. 70, 81. 83. 861 and the referenes therein.) Therefre, It is natural to conider

theaws of iterative lUnear-equation solvers In codes for larg systems of stiff WV? for ODEs.

Not only me iterative methods faster than direct solvers for mny system of lUna algebraic

equations, but also they require sigiflantly less storage than direct solvar In amol cm Is

addition, the use of iterstiver methods will sa so- of the restriction on the stesie- and

order-selection strategies used in stiff-ODE codes; we believe that this may improve the

effciency of these codes as well.

The outline of the remainder of this paper is as follows. Io Mi we review the numerical

solution of the implicit formulas need in may of the mol popular stif-ODE codes, emphasiz-

iag the relationship between the uer qiecifted error tolerance for the MV? and the accuracyf

with which the implicit formulas muMt be solvd. We also show that a large desm of mtiff IV?.

have properties that ake the emaciated system at linear algbraic equations amenable to

sulution by iterative methods. We thee review the Inexact Newton methode in which the

system of linea equations that arine in Newton's method are solved appralmately, rather

than eatly. Again, we emphasize the relationship between the accuracy with which fth

implicit formulas and eaciated linear algebraic s"sems must be solved.

In 13, we review Iterative linear-equation solvers with particular emphasis on two KLylov

sbpea methds. the preconditioned conjugate residual method for symmtric positive-

definit syaem and preconditioned Orthomin(k) for snsymmetrl podt&*"rea system. we

also Point out how theae iterative ln eutonsolvers can be used in a stiff-ODE cede that

donesno elicitly compote, or more the ieabian ausociate with the IVP, and, in particular,

how the lHnar system ca be peoditioned in this cam

In 14. we develop theoretical estimates of the computational work and storage required

I A MdOtqMuS.A is iWmau WO MPto a red WOOMIM (7 ItM sd*l it (S.AX) 31 Stfm d
fe VOO 2em. Twied7y. Os Md tdliM WaaIn~psla. (X y)m - 22 Y isWI
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to solve the qpa fy-disctized two- and three-dimensional Heat Equation using a stiff-ODE

sober that employs either direct of iterative Uineareuarlon solvers. I1. we present namer.

icai ress for the solution of the spetially-discretizsd two- sad three-dlmieaeonal Heas and

Couvection-DIffusion Equations - well a the 30 Stiff Detes Problem [27, 291 using M.

ODE solvrs based upon either direct or iterative Uinear-equatfaou solvers. Both the theoretical

and nuarical results look quite promiing.

Finally, in %,. we present our coacusioms.

This percomplemenits, the work of hikeanker ad Chern 1641. Gear and Sead [IM, and

]rown and admarak [M. who also sudied the -w of iterative lineareqation solvers in

siff-ODR codes. We believe our development of the properties of the linear algebraic system

tha arise In stiff-ODE solvers that makes, then linear system amenable to solution by itera.

ive linear-equation solvers is new. ae is our analysis of the relationship between the three

tolerances, required in a stiff-ODE code employing an iterative linear-equation solver. In

addition. our theoretical estimates and numerical reults wzend the work of the authors refer-

eed shove, and, in particular, show the importance of preconditioning in the solution of

some large systems of stiff wfts

Although their point-of-view is distinctly different, the predictor-corrector methods

developed and analyzed by van der Houwen and Sommeier [511 are related to the stiff-ODE

methods dlscuued in this paper and those referenced in the preceding paragraph.

2. imp&&lt formaise

Many numerical methods have been developed during the pest few decades for the solu-

tion of system of stiff P/Ps for ODs ad this ontinues to be an active aeato research.

Most of thaw methods can be clauied ae being in one of three faulliwr linear multistep

(mutlerlule)methods, Implicit Runge-Kutta methods, ad cupolatlon methods. Of

thus, the linear multistep methods hav so farprove to be themom successgul 27.291. with

the mos widely oed codas being DOWNU [33, 341. GEAR [44). EPISODE [51. and LSODE
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[461, each of which is based upon the Backward Differeaftion. Formula (DDFs) popularized

by Gar (343 Therefore, In our dscssin of Iliclit formula below, we concentme an the

BDF, althonugh of what we say applies, to stiff methods, in general.

A k-sp 3DF for the solution at (1.1) ca be writen In the farm

Tables of coefficients for thene farmulas my be found in [343 To advance the numerical

solution fro I.-.I to ig - gm-1 + A. (2.0.1) is solvd far the approximation y., to y(:.) using

the previously computed apprmximatons fr...d. Beemn (2J)1)1 I mplicit in ya, as equation

of the tarm

mnust be solvd at echb step of the integration, where c, contains the terms in (2.0.1) that do

not depend upon ye.

2.1 Acacmy laqulrsmaa tar (28.).

In generl, (C10.2) is nonlinear and cannot be solved mtecty. Shampine [73, 741 discumses

accuacy requirements far this equation He notes that most stiff-ODE codes attempt to corn-

pate an approuimate solution, J,, to (2.0.2) satisfying

bv. -1. 1 a c roL, (2-.1)
where TOL is the user specified error tolerance for the lY? and c I is a positive constant (usu.

ully le than 1). Shampinet (741 presents a convincing argument that, for a stiff-ODE solver, a

more appropriate criterion is to ap9.if

I?(F.)I S erOL. (21M)

Nag ol is this criterion m easily related to the accuracy requirement far the IV?, but also

it is simpler to implement. Furthermore, Shampine givesam intuitive argument that suests

that, far om stiff problem,

Hinmme, Houbak. Norna, sad Thoms (M] demonsatrate that it often takes more computa-

tioa work to satisy (CUM2 than (2.1.) with litle ar no gain in the accuracy of the numerical
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mistion of the mociated IVP. Although we do not addrem the interesting question of which

of theme stopping criterion Is am appropiate in a stiff-ODE aolvr, we do develop a bound

on L. -j.lI in term at IF (I.)l siia to one gie by Wilm [841, but us a smewhat

diffemt (and possbly simplar) detivation. Thi bound and om of the relations ued in its

dertiatim we importaut to our discumdon of iamet Newton methods and iterative lnear-

-qato solves below.

The validity of (2.13) is intimately related to the stability of the mociated IV?. Anum.

that the 1VP 52t0

V/ Q J)-! (S -00,"2) 99 70 -2 -2) (2.4)

for an (ty) and (tz) in the domain of interest, whie y and z ar real vectors, - is a red (pox.

sibly negative) cnstant, and (-) is a real inner-product. This amsmption is frequently made

in studying the nonlinear stability of formuim for stiff IV a it ensures the stability of the

MP (1.1) in the following mouse. Let y(t) be a solution of (11) and let z(t) atisfy the ame

diffrential equation but have a different Initial value. s(t.). If (2.1.4) is satided in a domain

ontaining bt y(t) and z(t), then

13,0)-sQ)1 *b '" )b,)-uu01, (2.1.5

where 1-1 is the om msociated with the Inner-product in (2.±4). We my that the IVP is dis-

dpetive I and only if 7 < 0. In this csm, the IVP is asymptotically stable in the sense that

the distance between y(t) and my neighbouring solution of the differential equation, z(t),

de pum exponentially with t.

Inequality (2..) can ao be und to bound b, -L, in terms of (). Asse that

(LI)holds at s. in a doain ontainlngbothy. and.. By (2 .) and (2 .4).

(1-*n POT)(V-S,-S )s (()- Pv ,S ). (
iUa. If I-k. > 0, then. by (2.14) ad the Cachy4chwam inequality,

T nr's e
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1
b. -M;Isz l~ IF(I.)I, ('L7)

bam which it fol that. if 0 .then (2 holds for anyh. 0, enmc 0 for the

0ft. Note also that, if 1-he 7 > 0, then (2.1.7) esures thaz ay solution of F7.) - 0 is

umique in the domain for which (2.1.4) holds. oreover, if (21.4) holds at t % for all real

veto y and s and if 1-khj.1 > 0. then, by the Uniform M000tonicity Theorem [671, the

uniqu uonut F (Y) - 0 0Im.

Now we consider in mare detail for which cass of stiff Wh we can expect thLondition

t--kl-- > 0 to hold thoughout the course of the numerical intePation. Fiust. note that, If

the Jacobian f,Q ) exs and is continuous, then the algebraically smalle - for which

(21A) holds is

i- Mmax (At--- ,.') '.

where the -azlum is taken over a1 nonzero real v-ctots v and a (ty) in the domain of

ntr". H ,ce,.PFy) - I-hAJ,S.j.) is poutive-real if 1-k.A.j > 0.

It is *my to show that

am ( (0) : kuiMe aee off,(,) ) S .y,

-bere Re,%) istheread pat of . Iff,(,) is symmetric, then equality holds in the ls ine

quality, but, if f,(tj) in nnsymmetric, then the inequality may be strict, as the exmple

below demonstratm. However, the proof of Theorem I of [391 can be adapted easily to show

tat, for my dud (ty) and any 4 > 0, then exists a real inner-product and an associated 7

utdIVIR (2.1,) for which

For " having a symmetric Jacobin. It Is quite reasonable to expe 1-k, .7 > 0. In

bet, for a lap sblam of these problems, all the el nvalues of the Jacobian f, (so) are

frm m which It follows thaI is 0, whence 1-Aj%7 a 1, since hnj > 0. Thus,

(U3) holds. On the other hawd if y 7 0, then the Jacobian must have a positive elgenvalue

arbitruaf doe to 7 in the domain an interest. Consequently, the differential equation has
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olution whose components may pow like *" in a neighbourhood of the solution of the IV'P.

Hece, it is reasonable to ezpect a stiff-ODE solver to choose a stepsize 6 for which

1-hJ7 • 0 to control the accacy in the potentially growing components at the solution.

In fact, if 7 > 0, one would expect 1-hj to be cloase to 1, at least if the error tolerance is

=05deady ternut. }Matever, the€ numerwd solution of (2.0.2) require that P,{.,,) be

Onumericafly nonusingular. This effectively ensures that 1-hj,-g> 0, provided that hj,

changsa by small increments, since this inequality holds initially for k sufficntly small and,

a - is em tially the algebraically asrnlims egnvalue of F,(Y.) -IhjJ,(t.,7),

l-kj y can never approach or pm through zero. Thus, for lVP& having a symmetric Jaco-

bian, it is reasonable to epet that F,(y,) will be positive-ddnitc ad (2.1.7) will hold in the

event that (2.3 does not.

It the Jacobian I ,(t,) is nousymmetric, then the asumption that 1- ,j 7 > 0 is some-

what more problematic, since, for a given inner-product, the associated 7 given by (2..L8) may

be much larger than the real part of any of the eigenvalues offy(t,). For example, consider

the differential equation y' - Ay, where

A- [o,
The eigenvalues of A ae both -1, but, for the usual Euclidean inner-product,

' a -z' -' - -l I

can be arbitrarily large even though the cigenvalues of A are fixed. In particular, if j I > 1,

then A is not negative-reaL Moreover, if a stiff-ODE solver is rsd to integrate y' -Ay over

a long time Interval with absolute error control, the numerical solution will decay exponen-

dtily outside of an initial transient region and h will become larp. Hence, for large t. it is

reasonable to expect that 1-6.i6 7 << 0 sad F,.) - - A.A will not be positive-reaL

Furthermore, for the usual Euclidean norm, the siallest constant c that ensures that

bp-S C IF (,)-F(,)I
is |W-heJ 1A)-'1. which may be larger than V%-7. Thus, for large a, the residual is not a

goad esimate of the err for this problem in the usual Euclidea norm. This is not to sy

Ii



that, for the unl Euclidean inner-product and all IVP& having nonsymetric Jacobians, the

boaditiom 1-h IS V > 0 will be violated and F..(7.) will not be positive-real or that the rei-

dual will be a poor estimate of the error in (2.)2), but this is the cam for some problems.

Om the other hand, even if the Jacobian f(t,,v*) is nonsymmetric, by an argument simi-

Ia to the one used in the symmetric cue, it follows that it is reasonable to epect that the

tepae ./ , n a rMff-ODE solver will be restricted by accuracy considerations to the ertent

thas l-A6NRe(k) > 0 for al eisvatues x of f ,.,Y.). In fact, for many stiff Ps,

Re(.) a 0 for all the eigenvalks of f,(t. ,,), whence 1-/4p&RQ) a 1 without any retic-

tic om the Ntepalse A. In any event, if 1-kP, R .(X) > 0 for all eigenvalues X of f,(t,j,,),

then. by (2.1.9), there ciss a real inner-product with respect to which ,',(y,) is positive-real,

although this inner-product may depend upon (t.,yi)- For example, for the marix A above, if

we use the read innm,-product (zy)r - (,.7). where 7 d .(s.1) and (.,.) is usual

Eulidan inner-product, then

- U (XAM), -1+ I69I

which, for S - a/e, is within t of -1. Hence, for 0 < I < - , A is negative-real, whence

I-h6pA is positive-rea with respect to the (',')r inner-product for any > 0. Although

then observatioms may not be of any practical importance in the selection of an error control

strateg for a stiff-ODE solver, we believe that they may be of signiflcance for the implemen-

tatioe of iterative linear-equation solvers, as will become evident in 3. Mxover, as we

palin In that setim, the iterative solvers that we consider are guaranteed to converge if

4'(7.) is poitive-real, but may break-down otherwise. Hence, their break-down giva a warn-

ig that Inequality (2.1.7) is violated.

2.L tmsileal Slad.. o (2A J.

For amsdff-ODE solvers, it is common to use functional iteration to solve (2.02) or to

employ an implicit formula, such as (2W0)., a the corrector in a p or-corcor method.

,oweer, far tiff-ODE solvers, the -s of either of these techniques severely restricts the

-!
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sepize and it is exactly this type of restriction that must be avoided for stiff problems.

Therefore, in mnt stiff-ODE solvers, a chord-Newton method is used to solve (2.D.2) at each

step in the integration. That is, given an initial approximation y, to the solution y, of (2.0.2),

the system of linear equations

W'l* y. ) + F(y - 0 (2.2.1)

is lved repeatedly until an acceptable approxmation y,* is computed, where W,' is an approxi-

mation to the Newton iteration matrix

Frequently, W. is just the Newton iteration matrix retained from an earlier iteration on the

current or a previous step. Of course, if (1.1) is linear and the exact Newton iteration matrix

(222) is used at each step, then (22-1) Sie the solution to (2.02) in one iteration.

With the exption of GEARBI [471, all the 'production' codes for stiff IVh known to

the authors employ direct methods to solve the system of linear algebraic equations (2..1).

For example, GEAR, EPISODE, and LSODE each use Gaussian Elimination (GE) with par.

tial pivoting, while DIPSUB computes the inverse of W1 explicitly. For large systems of stiff

IVPs, great savings in both time and storage can be achieved by taking advantage of the spar-

sity of the Jacobian. This observation lead to the development of cod-s that employ either

banded GE (such as GEARB [451, GEARIB [461, and LSODE) or spare GE (such as GEARS

(7 and LSODES [49D.

Furthermore, much of the consideration in choosing the formulas, strategies, and heuris-

tics in a stiff-ODE solver is directed towards solving (2a2) as efficiently as possible. To this

end, most stiff methods evaluate the Jacobian and refactor Wk as seldom as possible, since, a

explained in more detail in j 4, the cost of thes two operations may dominate the computa-

tion. Hence, in most stiff-ODE solvers, Wk remains unchanged for several consecutive

integration steps.

The deire to avoid refactoring WA also affects the choice of stepsize- and order-selection

strategim in a stiff-ODE solver. If the stepsize or order is changed from one step to the next,



tl a Ine atthe tamA6atFocurin in thenhe e ton iteraton matri (2.2)is

chapd a weD. Therefore, ansks W.1 is updated and refactored, it may be a poor appmima-

tim to (22.2). As a result, the chord-Newton iteration (2.21) may fail to converg Or corn.

urge too slowly. (Note that this observation applies to linear as well as nonlinear IV?s.)

Cansquendy, the smopize and order-eelectlon strategies in most current stiff-oDE solver

m restricted by this consideration. For -naIpl, EPISODE changes stepsize andlar order

only after a failed step or whea it estimates that it can increase its stepin on the nex stop by

a famtof at loe L3. In addition to forcing the method to take ore motps and function

evainau~sto lategate a problem than miht otherwise be required, this constraint on the

order- sad mepeiz-selectimn strategies reduces the Ismoothnes of the dependene of the

mutal erro committed by the code in solving a problem on the user specified error tolerance;

it s Viseerally agreed [361 that such "smoothnas" is a very desirable property for anODE

serv to poessab

The chaine of varlable-stepuize implementation of a multisep formula is also affected by

the consideration at how this choice will effect the effciency of the Newton iteration. The

two commonly used implementations are the fiued-coefficient implementation (PCI) of Nord-

sack 165h, which is used in DIPSUD, GEAR. and LSODE. and the variable-oefficient imple-

muain(VC1). which is used in EPISODE. For noustiff problems, both theoretical con-

adeftons and numerical testing have shown VC to be superior to FCI for the Adams far-

milas. (See, for exsample. [23, 38, =2 751 and the references therein.)

However, this clear superiority of one implementation over the other for Adams codes

des sat extend to moff methods based upon the BDFs. The reaso for this seems to be that,

whoas VCI is used with ak-step BDF. the coefficient F. in (LM2.continuasto change on each

of the k-i step following a mtepsze change. Therefore. unaess W.A is updated and refactored

as each of these steps, it may be a poor approuimation to the Newton iteration matrix (22.2).

On the other hand, FCZ does not share this disadvantage, since, for this implementation, 06 is

a rnmm that depends only upon the formula being used. We believe that it is primarily for
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this Ie. thue the numerical results in [27, 291 indicate that GEAR is more efficient than

11150DM. On the other band, the numerical results in [6, 71 suggest that EPIODE is more

robust tha GEAR. This empirical observation is supported by the theoretical reuts in [381,

which Ohow that VCI is mere stable tha FCI for the DDFs. ,1~ 531 for a more detailed dis.

maimo of this topic.)

The cost at solvig the implicit equation (2A0.2) als affect the coic of formula used

In a stif-ODE solve. For esample, although A-cable for arbitrarily high orders the clsical

implicit R=ungK a fermules (U11P) [41 suffer the maior disadvantage that the implicit sys-

tam of equations asociated with a Stage formula is S times ns large as the corresponding

wistoln (M0.) for the IDFs.

There has been a considerable effort during the pan decade to alleviat some at the

difficulties discussed above ascated with solving a implicit equation of the form (2.A.2) at

each SteP of the integration of a stiff ODE. However, one &Mproah that has; has only recently

begunto be investigated actively is the meoiterative methods to solve (=Z)3.37, 641.

For parabolic PDEs, iterative methods have been popular since the early days of compu.

Ing: 501 and AD[ hae been used effectively for several decades [801. More recently, the

conjuat gradient method M2,16,17,551 has received a considerable amount of attention We

believe that the usn of iterative methods in stiff-ODE codes should be investigated ao well. It

appears that these methods offer a great potential for reducing the coe . in ter= of both

time and storage - of solving large systems of stiff IVPs heving sparse: .acobianz. Furthermore,

adiscussed in mor detail below, the ase of Iterative methods may alleviate some of the con-

straints on the stepsize- and order-selection strategies discussed above.

2J3. [nnc Newton Methods.

To begin, note that the line-r equation (2-U.) Is solved only to obtain a approalmate

solution to the nonlinear equation (2.0.2): there is no reason why a direct linear-equation

solve must be used in a stiff-ODS code to solve (2.2.1). Moreover, Sherman [761 and Dembo,
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Ebenatat, and Stelbaug ILI show that it is only necessary to approaimatue the solution of these

linear equation "mciently accuatelf to obtain a quadratic rate Of congQ1m for the

Newton iteration.

Mare specacaly, consider the cass of inge Newton methods [1.5. Givens an ni

uem -y such method computes a Sequence of valum LA) saiyig the recuslom

IF . - + 7.yY)l s +b F(yI, (I3.1)
where re £ q,,C 1. In the aem section, we disuu them of it erative methods to compute

4 *'-y) satifying (23.1). but. independently of how Y&&1 is determined, Dembo, Emstat,

and Stethudg [1 pIC that, if

(1) F(Y.) - 0.

(2) F i continuously differentiable in a ueighbourhood of ,,

(3) ., (y.) is nonsingular, and

(4) Lv -. I is sUfficientty sMail7

them yak. y, with a rae of convergpnce that is at least Unear. In addition, they show that

(a) y.- y.speteadry -0.

(b) 7 y with m order at lgat 1+p .o<p C 1.,ife - O((IF Ly))and F,, iHolder

continuos with cpoxmet p at , 2 and

(c) yak, y.e th weak order t leas l+p 0. p s, ifF is Holder continuous with

eponot p 4t ya and - 0 with weak order at leat 1+p.

Takins p - I in (b). we 2e that ainexact Newtou method may retain the quadratic rate of

couvergmnce charcteriic of Newton's method.

Even though it is not necessary to factor or invert F (vt) in an ineact NewtoA method,

it is neeany to evaluate the Jacobian of the F/P, (aXA), to compute F,(JP) an each tera-

tio. For larg problems, the evaluation of the Jacobian May be very ezpensiv, and,

2 A fe.. I i f4d. -eadm l 008m p et if s em a anmme L md a adbbOtd NeO 7
iz L Lb-sr fwianz(v.

I4
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consequently, should be avoided whenever posoble. Therefore, we consider the clam of inez-

ani chord-Newton methods for which (23.1) is replaced by

I * 1 ,-WA ) + F( W) 1 9 IF" W)W.Al,32

where, a in the previous subection. W6 is an approsimation to F, (Y). But in this case, If an

ierative method is used to win (232), there is little additional coe usociated with using the

current value of the scalar h,P, in W, although the Jacobian may remain unchanged from

one inexsct chord-Newton iteration to the nest. In my case, the proof of Theorem 2.3 in [151

can be adapted eily to show that y.- y, lnearly for an inexact chord-Newton method if, in

addition to (1)-(4) above, we ssume that WA isa good approximaion to Fb(.) in the sense

that

IW.k-F,&(.)1 s 7 and I )-4-,(y)-'I - 7,
where 7 is the constant appearing in the similar inequalities (23) and (2.4), respectively, of

M[
Like a chord-Newton method, the twe of convergence of an inezct chord-Newton

method is not superlinear in general. This together with the convergence results quoted above

sugges that an appropriate choice for %a1 is a constant -q < 1, since (in theory at least) there is

no beneit in aslowing -0, a there is for an inexact Newton method, while allowing % - 0

makes the acceptance crterion (232) more stringent and, consequently, more expensive to

mtisfy for an iterative linear-equation solver.

I@ choming a value for , it is useful to note that, in many miff ODE solvers such as

GEAR, EPISODE, and LSODE, y,9 is normally a very good initial approximauion to y. in the

sease that both L&O -y. I and IF (y)I are doe to TOL, the user specified error tolerance for

the IVP, since y is computed by an explicit formula of the same order a the implicit correc-

tar. As a result, usually only one or two Iterations of (2.1) are required to compute y.1 satis.

f*g either (2.1.1) or (2.1.2). To avoid an excesive number of evaluations of F (ye) when

using an inect chord-Newton method to solve (2.2), we also require that, on mon steps,

only one or two iterations of (232) be used to compute an acceptable y.. Furthermore, note

I.
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that

I ,y ) = P,(7l(y +'-y) *r() = W *( -. *) + (y*).

Hem. if IF(h0) TOL ad we ant y t o matfy (212). thea a reasoable value for is

rc, were r Is a poitive cmuta and c, is the consnt appearing in (212). A. alterna.

ttve In to replace (232) by

I W I -y.1) + .11)I 1 r c1 TOL,(.)

does we require am# that y, sadf the acceptance aterio (.12) and not that yA ultimately

cverPs to y..

Sned upon the relationsh beWeen I6-y,1 ad IF(y.Al developed ia 12.1. it also

seems appropriate to mse either ( ) with - v Iat (2.33) as the acceptance criterion for

a inexct chard-Newto. method when the asept-ce criterion for the implicit equation

(.02) is (2.1.1) rter thi (2.1), although the justeaio more tenuous i this ce.

However, our numerical tem repoted in 15, baed upon a modiiled version of LSODE which

mloys LSODE's acceptance critera of the form (2.1.1) far (2.02) ad the acceptace cr1.

teion (233) for the inac chard-Newton method, show that this heuristic works quite well

in practice.

A stopping criteria of the form (2.33) for the inezact Newton method is alo used by

Brown ad Hlndma* in their modified version of LSODE. In addition, they prove a

result about the iterates y7, which, although apparently not tight, suggests that the stopping

criterion (23.3) Is appropriate for stiff-ODE solvers.

flrasy, we note that the accracy of the appomatios p, to Y, affects no only the

accuracy ad stability of the undednylg implicit ODE formula [581 but alo other formulas,

utraegies, and heuristim used in the ODE solver. For eample, in our prefiminary numerical

tees with a modified vM of LSODE, we found that &I - y,9 often atded (233), paticu-

ldy a. the Intial step of the Integrton. However, accepting y, - . has a deleterious

effect upoin he code, dan the error estimate in LSODE Is based upon the differmce bewee

Y7 sad the accepted Y and, moreover, the stepe. sand order-selection stratges are baed

1
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upon the magnitude of the error estimate. Hence, the arror may be grossly underestimated

and too large a stepsize selected for the sn step. We were able to avoid this difculty in

pert by taking -F (y), rather than 0, as the initial gues for y, 1-y in the iterative solution

of (2.33). Moreover, as this iitis gum corresponds to the usual corrector in a predictor-

correctar method, it produces a good initial approximation to the nonstiff components of

(233). The choice of a good initial gum for y,+*-y is discumed in mor detag for linear

sstems of Ia in [641. whee, in our notation, they consider initial Pums for * of the

form -(l +A + . . . +AJ)7(y) where A - I-W a, ad j a 0. However, the effect of the accu-

ray of the approimatiom y, to 7 on the formulas, strategics, and houristics of an ODE solver

clearly requires much mare study, not only for methods employing inexact Newton methods,

but also for al methods based upon implicit formulas.

& ItertitV Lamr-Equaeums Sevws.

In this section, we discus the choice of iterative methods for solving the systems of

linewr equations that arise in inexact chord-Newton methods (2.32). Because these iterative

methods must function as a component of a general purpose stiff-ODE solver, it is essential

that they perform effectively for generalspt. systems of linear equations and are not depen-

dent upon any special matrix properties such as those, for exmple, associated with the Ave-

point operator for the two-dimensional Laplacian. This consideration immediately eliminates

PDE-related methods such as ADI or multi-grid. bloreover, even for the application of the

method-of-lines to parabolic problems, many of these PDE-related methods an unsuitable

because they require specific information about the PDE itself (eg., grid structure or operator

splinings) which is not usually available to a general-purpose stiff-ODE solver.

Although the classical iterative methods, such as Jacobi, Gausa-Seidel, and SOR, are not

restricted to PDE-related problems, they may not converge if the Unear system is not sym-

metric positive-definite. Moreover, thes methods are often slow when used on their own and

ae, therefore, frequently coupled with an acceleration technique to improve their conver-

pawc rate. For example, the Symmetric SOR (SS0R) method [51 may be accelerated by

~|



-16-

oither the Chebyshev uml-itaratlon method or Richardson's second-order method 140t. One

undesirable featren of these acceleration techniques Is the need to estimate paramee to

mks them effective. Typically. thene parameters depend upou. the elgsnValu Of the

coefficient matrlz, which are generally not known to the user a primi. However, adaptive

Chebysw methods, which antomaticafy estimate thene parameters, have, beens developed

reumntly [6,.611 for bath symmetric and nonsymmetric problems. These methods mkay be per-

ticularly effective for time dependent problems, since the coefficient maraW. of (2.3.2) (and,

hence. the associated optimal Chebyshev parameters also) change slowly frM step to step

thIugou the numerical Integration of (1.1). Moreover, the Chebyshev iteration is

guaranteed to converg if the required parameters se chosen -correctWy and It the real part

at each of the sgenvalues of W.' is positive. As we argued in the last section. if this la" on-

dition is not satisfed, then the stepsize A6 is almost surly too large and should be reduced

until this condition is satised to ensure a reliable numerical integration. However, to date

we have no Investigated in depth the use of adaptive Chebyshev methods In stiff-ODE

solvers.

The Conjugate Gradient (CG) method is possibly the ms well-known ezmple of

another clas of iterative methods that has received cmdei rable attention recently. CO was

originally Proposed by Hestenes ad Stiefel [431 as a dietmethod, but it was reintroduced

by Raid [681 as an Iterative method for large sparse systems of linear equations. it has prome

to be very effective in the latter role for a wide range of problem arising from, for emaple,

geophysical qf W aplc tn71. elliptic PD!. [10, 11. 0.,14.721. and time-dependent PDEs [2 16,

1V, 59]. We belive that this elmss of iterative methods Is also suitable for solving the linear

SYstM that arise In atiff-ODE solvers. In particular, we consider the Preonditioned Conju-

gat Residual method [10. 24) and one of its generalizations for nansymmetric problems,

Preconditioed Orthomln [20, 24, 81]. in the remainder at this section, we give a brifd

description of then methods.
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3.1. e FrUMNIS CJgst leddal MUsh@

Throughou this subsection, let A be a symmetric positiv-deftnite matri. To solve the

systet of linear equations

Ax -b, (311)
the Coajupt Reiddual (CR) method, like CG, requires only that the user supply a routine to

compute the mmulz-vctor product Av for any gien vector v. Thus, CR can take full advasn.

sap of the qmity of A. However, the effectivenm of CR can often be improved dramauti-

wily by aplylu CR to the equivalent preconditioned rystem

As - (3.1.2)

intead of (3J.1), where 5 rn $-AS Is a symmetric positive-denite matrix doce A It.

I -5-,b - S -b, and SS' is "c o A (a an ss to be made more precise below),

bet mbmantaly less "ezpensive than A to invert. We refer to CR appqled to (3.12) as the

Pireoditlmod Conjugate Residual (PCR) method and Q as the precoditioner.

O.. of the severl equivalent forms of PCR is given in Figure 3.1. Although any

lmta.pmduct can be used with PCR, the usual Euclidean inner-product is most often used in

if 1 t, then PC reduces to CR. Bth methods require the same mount of storage, but,

DrQ I. PCR requires cue additional solve of the form Qu - y per iteration. Note, thoulh, that

the mitrix S amoated with (3.1.2) is not required epUcitly. Alo, if 1. only the reidual

F s Q'(b -Aik) -Q , Is available in this implementaion of 2CR; f the residual , for (3.11) is

requked aim, then either oe additional matrit-vector product of the form Q must be computed

per teradoe or a- additiond vector must be stored.

It i elw-known 1, 101 tha PC is on optimal polynomial-baend method in the e

am the ja iterate S compsted by PCR minimies

iV, I - (; -)e (,,4-p)C. -h, Is-, (31-1

over the transted pre diteoned Krylov subspace

e + Q'a. (Q'A)1't.. (.Q -'A -I-,r- (3.1.4)

1 I
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SO e- b -Ax.

301" Of*r 6

Set pe -,f&g

voM 1-0 STW 1 UNTI couverpunce DO

Solveft -Ape.

dk4 - (Fe -Ie141 l

p -0 f5 14p

EmD FOR

11pm 3.1.h The Pteomuditiomed Coujuget Rauldual (PCR) Method.

where, rj -hb-Art bs the ruulda fomr (36U.) amulated with j, for ,
;,- i -Ax - S -r, Is the darompoudiag rovidual for (34A2) so Ib the initial gum for the sa-

tim of (34.1), ad rg - b -Axe is the emmmited residuaL

The Fiecoodltioned Conjugae Gradient (ICO) method ca be Impleamented in a dia

way, but we believe thet, for owr applicatiom, ICR i more appropriate thea ICO. linut, notel

tht the Imemc ehord44ewtum cmthod requra that the esdual of (2.2.) sadY (23.).

* ~Thereftme fw this probem, CR is the optimal cupecoudtmmedl Wyow umbpm method is



the sense that it mnims the norm of the tesidual over the Krytov subspace (3.1.4) with

Q I. On the other hand, CO minimizes the A-norm a the error

I -1, " , -- (x -z A,) ( -s,) (rA m IuI-i (31.5)
rather than the residual itself, over the m spoe (3.L4). However, this advantage is per.

tfly lost for the preconditioned methods, ince PCR minimises jr, I.- while PCO minimms

Irl I.-, oVer (3.4). Second. PCR can be gendralized more easily than PCG for uornsymmstric

problems, partly became (3.13) defnes a norm tor may nosingular matrix A. provided Q is

positiveml. while (3.J) does noS. Moreover the preconditioned Krylov subspuce methods

discussed In the neat subecdon which etend PCR to nossymmetric ssem are capable of

minimizing the residual associated with (3.1.1) provided the preconditioning is applied "on the

riht. Therefae, we consider PCR only throughout the remainder of this subsectdo,

although m results hold for PCG.

Since z is a member of the affine space (31.4), the residual ; associated with (3.1.2)

suties

, t - A,.,(i));@ - ld );G. (3.1
wht* Pt -I b a polynomial of degree 1-1 and R, is a polynomial of dere i that satisfes

a,(O)-L UA has tk distinct eigmuvalues (which ae an positive sice A is symmetric positive-

debit.), we cn choose a polynomial Ra of dewe k such that .N(0) - and Rik) -0 for ech

levau 1% ot A. Since PC3 minimizes w~Ior (31A4) and this choice of N.j makes 1;1 1

zno, it follows that PCR, like PCO, converges to the exct solution of (3.1.1) in at moat k

steps. This is a slightly shuper version of the wel-known resut that PCO solves (34.1) in at

met U mteps (ummin emct arithmetic is used in the computation), where M is the dimen.

dm at the sy"aem (3.1). Note, though, that A and A may not have the same number at dim.

tines eigeavalus. In particular, A may have only a few distinct eipavalues, while A may have

I. Consequently, in pteconditimning, - must take care not to destroy an advautapous

Mor 8nerally, one an derve hom (31.3) and 3.1.6) the bound 10

-a
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I;I mi [s am Ot~x1IR i)J 00i (3.1.7)

wh.€ E4 is the set of polynomials of dege i or le that satisfy R(O)=! and {k,) are the

igenvulues, of 1. which are also the cigenvalues of Q-tA mce these two matrices me similar.

Using the I* Chebyshev polymmial as a particular choice for P, one can derive the following

bound [1. 101

19 1dV~MI01 (3.1.)

where 1(A if4)h4) the 4peM i d citonnu0 e of A. Again, since A and

-A we similar, X() - 1(Q-A). Alm. since 1;,I - I -, '.inequalities (3.L7) and (3.1)

hold with ia I and |;el replaced by Ijr I.-, and I, d._respectively. Similarly, i.t ws w .

known [U 1o that both (3.1.7) and (.U) hold for PCO with ';, I and 1,, replAced by ,I, I,-1

and Ir , -t. respectively.

If A is wel-conditioned or the elgenvalues of A are clustered, then CR reduces the

eror in the initial approximation very rapidly. Therefore, this method can be expected to

perform very effectively on the linear equations that arise in mildly stiff IVPs or in large IVPs

for which the eigenvalues of the aeociated Jacobian form a few clusters. In particular, CR is

well-suited for problem with a few stiff components only. (See [30, 82] and the references

therein for a more detailed discussion of this latter class of problems.) On the other hand, if

A is ill-conditioned with its elgenvalues spread throughout a ry lrge interval, then then

bounds suggst that CR may require a great many more iterations than PCR to generate an

amceptable approximtion to the solution of (31.1). Sin such linear algebraic system arise

during the numerical solution of many large system of stiff IV (in particularly, those that

wis from the spatial disrtilzation of time-dependent PDEs), we believe that it is necessary

to comidet effective preconditloninp for s with iterative linear-equation solvers in codes

for stiff ODEs. The importance of preconditioning is demonstrated In the next two sections.

Amog the mote popular preconditioniags for symmetric positve-defnite system ars

NSOR [43, NJ, the Incomplete Cholesky (IC) factorization [631, and the Modified Incomplete



•21-

LU (MILU) facorizsdom (411. a genefalizftiom at the Dupout-K ndall-Rachord (DXR) fac-

trztiS (11. Each at these preconditioninp can be written in the form

Q -LL' -A +f,

where L is a lower triangular matrix having the same sparsity StrUcture as A, and I is an error

matrix. That preconditlouinp do not require more storae than the original matrix A and, if

implemented carefuly [191, may require substantially les. Furthermore, to solve a system

On -, ot to compute Qu for any of thee preconditionings does not require more computa-

tioma work than multyplying a vector by A and, when embedded in PCR, may require sub.

st,,tiafly less [191.

As explained in 2.1. if the Jacobian f, (to) is symmetric, then it is reasonable to expect

that the chtd-Newtom Iteration matrix W (2.2.1) will be wmmetdc positive-defnite. If this is

net the case, then the stepsize k is almost surely too large far the IP and should be reduced

until W,* is positive-definit. to ensure a reliable numerical integration. For W.& symmetric

pastive-defite, the SSOR preconditioning is well-defined and both the IC and MILU incom-

plate factarizations can usually be formed (56, 62, 631.

KCM band upon thes preconditlonings has proven to be very effective for solving the

lear equations associated with self-adjoint elliptic PIDEs [101. In the net two sections, we

present some theoretical and empirical results for the spatially-discretized Heat Equation

which show that PCR is very effective for this model problem also.

3.3. r.e i Orthemn.u

Although both IPC and ICR have proven to be a very effective methods for solving

symmetric positive-definite systems of Ulnear algebraic equations, only recently have they been

eateaded to solve more general systems effectively. As explained in the previous subsection,

the selutim of symmetric indefinite system is not of great lmportance for stiff-ODE solvers.

Therefore, we only consider the solution of nusymmetric systems in this subsection.

An obvious way to cotend either ICO or PCX to solve a nousymmetric system Ax , I is
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to apply either of theme methods to the symmetric positive-defiuite normal equations

A'Ax - A'b or to the related system AA'y - b, z - A'y. In either case, though, for the badly

onsditione systems that arise in stiff-ODE sobvrs this approach is not anracdve because it

frequently leads to a slow rate af convergence.

Recently, several effective Krylov subepace methods have bee. developed which ated

PCO and/or PCI to nonsymmetric systems. For example, Concus and Golub [121 and

Widluad 183] developed a technique known as the Generalized Conjugate Gradient (GCG)

method which uses the symmetric part of A, S - %&4 +A'), as a preconditioning. GCG is par-

tkulaity effective if a u"es solver exists tor S. Although this may be the cue for many pas-

bolic problems, this method is not weil-suited for use in a general-purpos stiff-ODE soiver,

dSm them Isno guarantee that systems of the form Sz - b can be solved cheaply.

We choe to base our investigation of the use of iterative linesr-equation solvers in codes 

for stiff IVh upon the Preconditioned Orthomin(k) (POR(k)) method 120, 24, 81], an e-ten-

don of PCR to noesymmetric systems, partly because Elmun's codes [21. 251 were available to

u and pertly because, like KP, POR(k) minimizes the residual associated with the precoandi.

tmed system over a subspace described in more detail below. One of several other alterna.

ive Kryl subepace methods is discussed by Gear and Saad 137] and Brown and Hlndmarsh

In this subsection, we briefly outline POR(k) and the related Preconditioned Generalized

Coajugate Residual (FOCI) method from which it is derived; a more detailed discuadon of

theae methods can be found in [20, 241.

Like PCI, the effectiveness of POR(k) can often be improved dramatically by an

approplate choice of premndtoning. However, since POR(k) is applicable to noesymnetric

systems, there is more fleaMbillty in the choice of preconditioning for P0R(k) than there is for

PCIR. More specifically, the preconditioned system associated with (3.11) may be of the form

Ax (3=1)
where A -Qi"AQzz 0n3x, - ribh, Q2 and Q2 are subsrantally ten 'pensive to

"e q



-.23-

invert than A. and the precondltioninl matri Q - QIQ 2is "close" to A (in a sense to be made

more prcise below). In this fotmulatiou, the preconditioning (3.2) used with PCG or PCR is

equivalent to a *wwsew pou vbr lwd spit preCoudioR having Q" QI. Two other

patclrforms of preconditioning (32.1) are worth noting: precondkioxhq o the lefs only

with Q2 -I and preemdbWiang on di right on7y with 12, -i1.

The prototype of the PGCR family of methods from which POR(k) is derived is show

in Figure 32.1. The expression for e used there is mathematically equivalent to the erpMes-

mon giv e in Figure 3.L1, but Elman [241 believes that the former is leas sensitive to roundoff

rror for nomsymmetulc problems.

a.o.e zs-

Set r- -Azs.

Compte ;s M'lrS.
compete Ps "Qs'W4o

FOR i-O STEP 1 UNTIL convergence DO

I ~ ~ ~ ; I' - (P,,tQ Ap,Q'p. 1 Ag

Compte P+t.

ED FOR

1gm 3.31 The Prototype of the Preconditioned Generalized Conjugate Residual
(POCR) Family of Methods.

The two-tera' recurrence

Piet F1 . +bjpj (32.2)

used in IPCR generates an A'A-Crthogeaal sequence of search directions (pld provided A is sym-

mnu- A eite. However, to obtain such a sequence for A nonsymmetric, it appears to be

eussy to explicitly orthaonalih pt, apginst aU previous search directions p, in general. The

r..u recommended by Mom [20,241 for 1GCR is



.24.

P,.. -,-';. , bJp1 . h1 - -• )
PIIQ4(1j0j~. (Qj'jAj4AP) (3.23)

POCK cons of the prototype method gb'en in Figure 3.2.1 together with thee last two equations

to compute A +.

The recuffence (323) requires the storage of ail past search directions P sawel a far

more computatosa thu (32.2). This my be prohibitively expensive for Large problems. In

P01(k). the truncated recurrece:

P, , + b;., l,. J, - max(1 -k +1). (34)

i used instead, where i is computed a in (323). That is, Pg, is orthogonslized apint the

p I search directions only. Hence, PR0(k) requires the stamp of at mat k pest sarch

directions and the recurrence (32.4) is inificantly cheaper to compute than (32.3).

The work per iteration for these preconditioned Erylov sbspace methods is the same as

for the unpreconditioned versions except that j'tAQ t;, t must be computed in plae of

Arm t. In computing the former product, the intermediate reuit can be used to com-

pure p.1,and Qt'tAp can be computed without any additional matrix-vector multiplies pro-

vided that Q j-Ap is saved instead of pj. Moreover. for SSOR and sveral of the incomplete

t s [41, .,o 141.';6,. can be computed very emciently using Eistat's tech.

nique [191.

If Ax - b is preconditioning on the left only (Q 2 - 1), then each of the PGC family of

methods requires the same amount of storage a its corresponding unpreconditioned version.

Otherwis, ech preconditioned method requires one more vector of stomp than its

corresponding unpreconditioned verskn. However, the residual ; calculated in this Imple-

msatatinm of the PGCK family of methods is the residual mociated with the preconditioned

ssem 3.2.1). If the residual b-Avg - p - t0;j mociated with (3.1.1) is required, then the

storage advantage of prectnditioning on the left only is lost: in this cae, each preonditioned

method requiresone mors vector of storage than its corresponding unpreconditloned version.



If A is positiveal, then both POCK and PO1(k). at0, an convergent damnce

methods in the sense that I;,1-0 u I- and i;,1., < i;,I for ;,,o * [20 24 Mors

pekaly. FOCI. like PC. minimizes al m I over the translated Ity aubspece (3.L4).

Hence, in this case ao, the residul . ast the Is POCR iteration satsles

I;,! 9nl R(A)1lFol, (3.2)a man

where Ill is the aet of polynomials of deree I of es satisying R(O) - 1. Using (32.5), one

Can Pgov [20, 241 thae

I;, I( 26)

where 3 - ~&4 A). the symmetric part of A, is pauithre -dai since A is positive-rea by

mumptiOn.3 This bound, though, is not nearly as stIng as (3.U) even though PGCR and

PCR compute identical iterates zj if A is symmetric positive-definite. If A has a complete set

of cipavectors, then

I;Is .(T)M, !;,I, (3.2.7;)

where 1(i) iT I 1T'I1 is the condition number of the matiz that diagonalizesA

;1, - min mu IR(,)I. (3.28)

nd (j) an the elpnvalues tA. Note, iVA is normal, then X(7)  1.

Far i >A, the I'* Iterate st computed by POR(k) mini,,m |; I aver the affue space

rather than the full translated Krylov subspace (3.L4). However, In this can also, (3.2.6) holds

for my k.

Is adl of the bounds isted above, ;j may be replaced by Q 'r, since thes two vectors

we equl. Thus, one advantage of peonditiong on the rigt only (2I - 1) is that. in this

ans, the POCR family of methods minimizes the residual r, sciated with the unprecondi-

ttaaed problem Ax - a at each Iteration, since,, - r. As explained in the previous ubeec-

oC (SuX) z)-(rh d -,, o..um .damA -S +N M is.dv*...aa (zJf)-0u,
as lmm .Md 2-A')is smwiews.
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tion, this seems to be the mi appopriste measure of the error to be mini ed by an item-

tive method embedded in an lneact Newton iteration.

Prvided that the mociated chord-Newton iteration matrix W. is positive-mil, these

bounds indicate that, like CR, the (unpreconditioned) OCR family of methods is very

Wecuied for mildly stiff Va and tor stiff Z for which the eigenvalues of the a ociated

Jecobian forn a few einste. On the other hand, if the eligenvalues of W* are spread

throughout a large domain, then. n is demonstrated in the na two sections, the effectivenm

of POR(k) may be improved dramatically by an appropriate choice of preconditioning. How-

ever, care m be taken in chooing a precndftioaing since, for the more general precoadl-

tionings cossidered in this subsection, A may fai to be positive-real e though A is. One

advantage of using the. symmetric positive-definite split preconditioning (Q2 - Q) is that A is

postive-real if and only if A is. Furthermore, if A is 'nearly' symmetric, then so is 2j"tAQ I'

and, for symmetric problems, the iterates xj computed by POR(k), A a 1, are identical to the

iterates ,ompted by PCR and PGC. Intuitively, if Q '1AQ I- is "nearly symmetric, then we

atpect the convergence rate of POR(k) to be close to that of POCR. On the other hand, even

if A and Q - QIQ2 are both °neary' symmetric, Qj'AQt "' need not be, and the convergence

rate of P R(k) may be significantly dower than that of POCR.

Some popular precosdltionings for nonsymmetric sysems am SSOR [42, 85, the Incom-

plete LU (fLU) factorization [631, and the Modified Incomplete LU (MILU) factorization [41].

Each of these precndltioninp can be written in the form

0-LU -A +1,

where L aud U, repectively, are lower and upper triangular matrices having the same qparsty

pattern a A. With these factorizations, It is possible to precondition on the left or right or to

us a split piecouditioning with 0, - L and 02 - U.

P03(k) with them preconditioning has proven to be very effective for solving the sys-

tems of liner algebraic equations associated with diacretized non.elf-adjoint elliptic PDEs.

Obviously, the maller k is the moe efficient them methods ar in terms of strap required.
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Elmam [241 als found that these methods ae most efficient in terms of computatioual work

for k a 5, with k -I often requiring the least amount of work.

As mentioned In I21, W4 is positive-real with respect to a given Inner-product for any

A6 > 0 for a ta clan of stiff Ms, including all problems that are dissipative with respect to

that ianer-product. But, for any given inner-product, there are stiff tW for which WA is net

positive-real with respect to that inner-product for reasonable choike at st pie, A6,. In the

latter cm, any member of the PGCR family of methods based upon that inner-produta may

either compute an acceptable numerical solution or my "brek-dma" during the computa-

tim.

On the other hand, if all the eigmnvalues of the Jacobian fy(j) lie either in the left-

hl comp plane on the lnsgn azimis, thea. without any restriction on the stepIze A,,

all the ellumdues of WA lie strictly in the right-half complex plane. boreover, as discussed in

IM, eves if some of the eigenvalues of fy(sj) lie in the risht-half complex plant, it is rea-

sonable to expect the stepuize A, to be constrained by the accuracy requirements to the etent

tha all the eigenvalues of Wk will lie strictly in the right-half complex plane. In either case, it

follows from (2.1.9) that there ezists a real inner-product with respect to which Wk is positive-

red. We hope to mAd a cmptatlonaly effective way to utilize this result to dynamically

choose an appropriate inner-product whenever Wt' is not positive-real with respect to the usual

Nclidean inner-product.

3.3. Jaeablaia-res Stiff-ODE Selvml.

Am several authors have noted, it is possible to avoid explicitly computing and storing the

Newte iteration matrix W, when solving nonlinear equations by an inexact Newton method

oupled with a Krylov subspace method. To implement such a Newton-Krylov method, it is

omly -ecesnT to be able to compute iv for any given vector v. where I is an approximation to

the Jacobin I,(s.,.In many stiff-ODE solvers, divided differences are used to form J.

Dint, dm I s sot needed explicitly, the directional difference

-4 t.
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[i .,14 + a,) -f (t.,-Y-1/8
a be ud to calculate an approximation to fQ. ($yY diretly, where 8 s a scalar constant.

Oa and Tapia P31 and Oleary [66 recently Investigated a sima idea for the applica-

dm of CO to minimizatio problems. O'Leary shows that, in addition to saving storap, the

Newto-CO method employing directional differences requires fer computational work than

the traditional dilscre-Neuton method for large ptblems.

Ftherto the test results of Brown and -lladmanrs [3 based on the code developed

by Gear and Saad [371 demonstrate that the an of directional derivatives to approximate

matrix-vctor products in a Newton-Kylv iteration is very effective for the spetialy-

discretized nonlinear parabolic problems that they consldered.

Howeve, al of the pecodltiounin referenced above require an explicit representation

of the matrix J. Chan and Jackm [81 though, recetly developed it class of nonlinear precon-

ditionings, including a variant of SSO, that does not require J explicitly and so can be used

with -Newton-Krylow methods empoying direct ioa diffeence.. Moreav, for their taw

problems, the noulInear SSOR preconditioning wa as effective n the sadard explicit SSOR

preId, lionig.&

Sincs computing and storing Iacobian is a major source of expense in solving large stiff

JYPs, the posibility af avoiding this computation wtei very attractive, particularly for thaee

problems for which we can expect a Krylov sbspece method to converge very rapidly, such as

those ih for which the eigenvalues of the ssociated Jacobian form a few clusters.

4. lsllemd Itst for tlU Heat ow ua.

TIhe theoretical results in the last section can be adapted emsily to show that the use of

Krylov subspace methods in stff-ODE solvers is wry effective for a large dm of IYPa As a

particular exampie, in this section, we compare the computational-work and storase required

to solve the sltdy-d sizm: d Heat Equation by fve tiff-ODE solvers ech baed upon the

3DI. but using e of the following methods to solve the systems of linear algebraic equa-

tdos that ari at eu step In the numerical integation. (1) Mull Gaussia limination (E)



(2) bend GE. (3) spae GE, (4) the Conjugate Residua (CR) method, or (5) the Precondi-

tioted Conjugte lgidud (ICR) method with either the 53CR [42, 851 or MMU (411 prn-

ditonin& Although we do not advocate using then methods to solve the Hest Equation in

Pactice, the ptay-discretized Hat Equation is a good test problem from a theoretical

poktdltw becsae it is rMstve of a da of tar stiff IYPs with sparse Jacobim

sad It can be analyzed thomnugly.

Con-I the Heat Equation in one dimension (1-D) with homogeneous Dirichiet boun-

d-7 conditiodw

Sfor,(,.) 0o, (az)f(tot X(O.1). (4.1)

Oo)e -.. 1)O fo rt(:.tt].
S(re)-a)=, ) fo z ([O.1.

Applyin the method of tines with the usual centered-difference approtatlon with stepuize

A 1 to the spet derivtive of (4.1) ges the linear system of M = n ODEs y' = A ym +1

for E(#ofu] with initial conditions y,(ts) - ,(SajA) for 1-1....u, where y() is an approzj-

nalon to aQ sjA) and AI - A-2dim(1,-21). It b well-knowu thst the eignvalues of At are

1 2A'cm(*,Az)- 11 :f-.-.. ). (4-2)
AR the eigsenvlues are negative and are distributed throughout an intervat from approd-

mately --Vs to q viotely --4A-2. As the spatial discrethation becomes finer, the resulting

system of OD.s becomes both large and stiffer. but the egrenvalues of the associated matrix

A3 do st cluster.

Also consider a similar spatial discrediua of the Heat Equation in two dimensions

(2.D) and three dimensions (3-D), e with homogeneoes Dirichlet boundary conditions. For

the 2-D probm, the matriu A2 asociated with the reuling linar system of M - M2 ODEs

y'iASy Is A 2 -'AdAs(I,jTJ), where I Is the axe identity matri sad

T - d (I.-4,1). Mencs, the elgenvalus of As are

N +J%1 :I-._,,j~l..,

where ki and are ealpvalUes (42) of the I-D problem. Si miy, for the 3-D proMem, the

-. ir
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As asscilated with the resug Uner systm of H-rn3 ODEs ( -Ay is

As - A-2dhq(f2-I,2.)- where 12 is the Mjxg 2 identity matrix. D2 "d&S(it.T1 1 ). and

T2 - diq(1,-6,1). Hence, the eigauwnues of A an

{ h, + X, + ka : I -1,-,' J - k.,m -l,_M }

where ,, kj, and X, we elganvalues (4.2) of the I-D problem.

We compare the computatonal-work per step required by each of the Ave stiff-ODE

sOvs anidered above to integrate the spadlly-dsPretzd 1l-D, 2-D, sad 3-D He Prob-

Isms. The numerical results presented in the nat sectio, show that, for any gives problem in

this dam, each solver requires essentially the ae number of steps throughout the numerical

integration. Thus, for each solver, the computationl-work per step is representative of the

total computational-work required. Moreover. implicit in our comparison is the 8mumption

that each stiff-ODE solver requires the same number of Newton Iterations per step. The valil-

dity of this amumption is supported by the numerical rmults also.

The computational-work per step can be divided into three componenta (1) the work to

factor W for the GE variant or to compute a preconditioning for PCR (if W, is refactored or

the preonditioning is recomputed on that step), (2) the work to solve (2.2.1) using either the

LU factorization for the GE variants or the (P)CR method, and (3) all the remaining work

per step, which is termed the computational-work overhead. We measure the computational.

work for each operation in term of the number of arithmetic operations required to perform

it.

Similarly, the storage required by each solver can be divided into two components (1)

the stcrape required to solve the system of linear algebraic equations and (.) ll the remaining

storaep, which is termed the strap overhead.

For each of the Ae sff-ODE solvers considered, both the computational-work and

torap overheads ateproportioal to M, thed reof the syatem of ODEs solved. Moreaver, in

both cuss, the overhead is identical for ech solver.
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In determining the computational-work and stog required for full GE, we ae

that no a vatae is made of the sparity of the matrices At, A2, and A3. Thus, in each case,

to factor the Newto iteration matrix I-., i -1,2,3, requires computational.work asymp-

todcally proportional to MU, which is m3, m6 and n 9, for thel-D. 2-D. and 3-D problems,

respectively. In each can. both the computational-work required to solve the associated sys.

tern of inear equations, given the LU factorization, and the aorge needed for either the

Newton iteration matrix or its LU factorization are asymptotically proportional to M 2 , Which

is m2, o", and n 6, for the -D, 2-D, and 3-D problems, respectively.

The half-band widths for At, A2 and A 3 an 1, m. and n 2, respectively. Thus, in each

cse, to factor the associated Newton iteration matrix using band GE takes computational-

work asymptotically proportional to m, s', and m 7, respectivdy. Also, in each cam, both the

computational-work to solve the amociated system of linear equations, given the factoization,

as well as the storage required for either the matrix or its factorization ae proportional to m,

n , and nss respectively.

In determining the computational-work and storage required for sparse GE, we assume

that the asymptotically optimal factorization is used, although, frequently, this is not the cm

in practice for the Z-D and 3-D problems (cf. [22, 231). Thus, the computational-work to fac-

tor the Newton iteration matrix I -. &*A , 1 -1,2,3, is asymptotically proportional to m, n3, or

mG, respectively. In each ca, both the computational-work to solve the associated system of

linear equations, given the factorization, as well a the storage required for either the Newton

itemtion matrix or its factorization are proportional to m, a logu, and =s, respectively.

As stated In J03, to compute a sumfciently accurate solution for the inexact chard-

Nes method, it is generally nemesry to reduce the Initial residual associated with (23.3)

by a constant factor I only, where q In typically about .L From (42), the spectral condition-

sumber of the Newton Iteration matrix I-hj.,., i - 1,2,3, Increases with k, from 1 at

A6, -0 to 4w& " ah, -2-. Hence, from (3.Z)) the number of CR iteration required to

reduce the initial residual by a factor of is at ms [IoZ(2/)W'A't. In addition, because
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of the sparsiy of A I, A2, and A,3 the number of arithmetic operations requtid for each CR

Itertson Is proportional to ), the dimension of the matrix. Thus, for each of these matrices,

the computational-work requited to compute a sufflcienty accurate solution to (2.33) is at

mt asymptoically prorional to m2, = 3. and m4, respectivey, and the storage required is

uympoe icai1y proportional to, 2. md m3 , respectivly.

For eder the SSOR [42, 01 or M.UU [411 precondluloning (with the appropriate

of scalar parameters), the spectral condition-number of the preconditioned Newton iteration

mtrizl ncressee with A from I at A6 - 0 to A- (for some contant e) ma A- a [101.

Hence, the number of PCR iterations required to reduce the Initial residual by a factor of I is

at at mymptoslcafly proporioal to A-. In addition. because of the spasity of each New.

ton Iteration matrix and its amaciated preconditioming. the number of arithmetic operations

requited for each PCR iteration Is proportional to Ki, the dimension at the "yatem. Thus, in

each cams, the comptational-work. required by PCR to compute a sufficiently accurate sola-

tics to (233) is at aoe proportional to f , m2 , and a", reqcvely,$ and the storage

requited remains proportional to m n, and M3, respectivly. Moreover,. in each CM, the

work required to compute the hULU factorization is proportional to the number of nonzerce

in the matu6, m, n, and ns, respectively, while no work at all is required to 'compute' the

traditional form of the SSOR "factorization.

The computational-work etimates given above ae biased in favour of the GE variants.

During the Initial tramsient for each problem, the stepesie k is "ash, and, consequently, the

coodition number of the Newton Iteration inatr I -k .A, i - 1,2,3, or the ussociated

precmdltiomd rz Is 'clane' to L As a result, the computational work per step for CR

md KM is much smalle during the initial transicnt than the estimates given above Indicate:

theps as tm ae accurate for A6 are only. On the other hand, the computational-work

requd by the 03 vasts to factor and solve the Newton systems Is Independent of the

$ Fm 0e -0 pubMC h y MIWU (wAs Me m edaid U.U Iemor .,nO) inwlm an
l umwiw emoned os I-wmI 1.pnoaed ws& i me, oa Ohm,. she I4.U aamsmte balmily 0.es-it LU flmisiee eal-A,, NA. this t~ beldb e mmm am Iaipls e fmoemmeemas vU.
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tepdze A,. In addition, wen for A6 "barge, the computational-work estimates for PCR do not

appear :o be optimal, whereas the estimates for the three GE variants discumed above are

optimaL For ezmnple, Chu. Jackson, and Zhu [91 show that there is strong evidence that, if

the "AD-DKR' -reoditiming is used for the 2-D problem, then the condition number of the

p-,-diltioned Newtom iteration matrix is asymptotically proportional to A-2 and that the

number of PCR iterations required to reduce the initial resdual by a constant factor of q is

aymptotically proportional to &-'A. Again, because of the spersity of A2 and the associated

AD-DKR preconditioniag the number of arithmetic operations required for each PCR itera-

tim is propotional to M, the dimension of the system. Thus, there is strong evidence that,

for the 2-D problem, the computational-work required by PCR to compute a sufficiently accu-

21
rate solution to (23.3) is at most asymptotically proportional to - 3, rather than M A. More-

over, both the storage required for PCR and the computational-work needed to compute the

AD-DKR incomplete factorization remain asymptotically proportional to m2.

The computational-work and storage required for each of the dve stiff-ODE solvers is

ammarized in Table 4.1. These estimates show that. for this class of problems, the user

should take advantage of sparsity: full GE is not competitive with either band or sparse GE.

For the 1-D problem, bend (sparse) GE is the moast effective method. On the other hand, for

thi 2-D problem, both CR and PCR require asymptotically less storage than any of the GE

variants and are asymptotically faster than either fall or band GE. However, it is not clear

which of 1CR or sparse GE is asymptotically faster. The answer to this question depends on

how frequently the linear systems must be refactoaed as the stepsize increases during the

course of the numerical integration when sparse GE is used as well as the proportion of steps

taken in the transent region wher A6 is smalr and PCR requires lea computational-work

per step than the estimates in Table 4.1 indicate. For the 3-D problem, though, PC is asymp-

todcally taster than any of the other methods and requires significantly le storage than any

of the G variants.



-34-

full GE band GE som GE CR PCRI

fctmor m - m
solve al ,_ _ Ul =M-6

s-D =3 Is-- a m a -

overhead m I 0 0 IS
factor I a - - M

2-D _ _ __t _ m '  .- i-~o m m 2  m

ohed m 
2  m 

z  m9 "tve - - m -V - I. . = I - mz g" a s - M ae
_ _oas I _

.... 
....... I =' "

overhead 3 - a as

t p d solve h DIS
It3 -jr--_-

overhead 1 13 1 sI

TMI* 4.- The yp*,*;lal asymptotic term for the storage for and the
eomputatnonal-work per maep required to factor and solve the iinear algebraic Ss.
teas that arise durds& the numerical ftegstia of the spacialy-dscr-tized Heat
Problem, as well as the overhead of all the remaininS storage and computauicnal.
work per step required by the stiff-ODE sohe.

S. Nummed Itmbats.

We have replaced the direc linear-equation solvers in LSODE [481 by PCGPACK. a cal-

tectics of pt ditioned lrylov subspace methods implemented by Elmm (21. 251. We refer

to the resulting aperimental code as LSODCG. In this section, we repot some preliminary

numerical enperiments with LSODCG to test the effectiveness of iterative linear-equation

volves In codes for Iap systems of stiff IVPs for ODEs. In particular, we compare the per.

formawce of LSODC and LSODVE 4 [49) on two pais of spatially-dscretlzed two- and

three-dimensioal linear parabolic problems as well as the performance of LSODCG and

LSODE em the thirty Stiff Detest Problems [27, 291. Although most of the Stiff Detest Prob.

en are ot large, they do test the robustness of the inect chord-Newton method and the

moelated Iterative Hlear-equatslo soivers used in LSODCO. Then preliminary tes results

look quite -rmsn.

4 LSOOM in a vedm of LIOS Wlnfwpo . the Yae Spane Matll ftkase (22.231 to .1Wv the qswi of
Umm *Vwqe. by a pun dm&a metbe.
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5.1. LODU LSODI , aed LSODCG.

We developed two variants ot LSODCO: LSODCC3.VI and LSODCO.V2. In the former,

we did not mae any modifications to the formulas, strategies, or heuristics used in UODE

other than thon modifications that were necemry to interface LSODE and PCGPACK, such

a changing the data structure for storing matrices in LSODCO to the spaem "LA-JA-A°

reresensatms used in PCOPACK and many other spar linear-equation aove In

LSODCG.V2, we made one additional modification to LSODE in hope of reducing the

number of inexact chord-Newton iterations and associated function evaluations throughout

the course of the numerical integration: each time h. P, is changed in LSODCO.V2, this scana

factor is updated in the Newton iteration matrix I-k 06J without re-evaluating J, and, if a

pre ditioser is being used in PCGPACK, it is recomputed. Since the Jacobian appruima.

ties J is not re-evaluated, these updates are relatively cheap compared to solvMg the maoci.

ated linear alebri equations.5 In LSODE, LSODES, and LSODCG.V1, on the other hand,

the Newton iteration matrix is updated only when the magnitude of the relative change in

h616 is greater than CCMAX, a constant set to .3 in each of these three codes. Whenever the

Newton iteration matrix is updated, either it is refactored in LSODES or, if a preonditioner

is being uad in PCGPACM, the preconditioner is recomputed in LSODCG.VI. In LSODE

and LSODCG.V1, the Jacobian approxmation J is re-evaluated whenever the Newton itera-

tios matrix is updated; in LSODES, the Jacobian is re-evalusted only when it is estimated to

be a poor approximation to the current Jacobin.

In all four codes, the accepance criterion for the Newton iteration is of the form (2.11)

with c-CON IT- 2, where NO is the order of the BDF in use. In both variants of

LSODCG, we use a stopping criterion for the iterative linear-equation solver in the inenct

chord-Newton method of the form (23.3). Our numerical experiments show that any r in the

5 Updg as Na"sea luradma mtf wmM be am cbepar if LSOOCO.V2 aomd -J dm

1 -A6 &J. ud, ,mp i$ myy iaemOM,



range [1,A is quite sads-tcwy: mutr values of r in this range lead to mom PCGPACK

itertions per inect chord-Newton itemr.on, but frequently lead to fewe inezact chord-

Netan iterations remtiang In fewe function evluatims. Some numerical results along this

line an repoted in the third subsection. Alm, a mnationed In 2-3, we take -F(y), rather

than 0, as an inti um for y.'* - in (2.33) for both variants o LSOIDCO.

S~l. Spedaly-Dbmdi LmLh Parabolc PrdswAr.

Consder the Ha Equation in two dimensions (2-D)

+I /l fl (SM. )

and three dimedous (3D)

m, - + + (5.2,2)

and the Convection-Diffusion Equation in 2-D

4M -+ + (5.3)

and 3-D

+w -on+, + w + + , + a, (52.4)

each with homogeneous Diuichlet boundary-conditions either on the unit square [O,11x(O,1] for

the 2-D problems or oan the unit cube [0,1]x[0,x[01,1 for the 3-D problems and initial coudi-

does fr t ( [0'1O.

B(O-,,) - 6Z(1-),(-.7)

for the 2-D problems and

a (O, yj) - 64x(I-x( (1-y (1-x)

for the 3-D problems. As descibed in 14, applying the method of lines to the Heat Equation

with n+1 evenly spaced grid points in each dimension ordered in the usual left-to-right

bottam-to-top manenr and using the usua three.potat second-order centered-difference

pPrnmtahu to the second-order spatial derhiaves with stepsize A - I yield; a systemn +1

of siff ODE. of the form

,(,)-,y(), (5.5)

I



wheve A is a constant symmetric ngadve-defnite matrix with A - A2 of dimension M M 2

for the 2-D problem and A -A 3 of dimension M = m for the 3-D problem. Applying the

method of lines to the Convection-Mfsion Equation in a similar way, but with the addition

of the two-point second-order centered-difference approxiasiioU to the fist-order spatial

dertii, also yields a system of stiff ODEs of the form (5.2), where again A is a cnstant

matrix o dimension M -u2 for the 2-D problem and of di on M -= for the 3-D prob-

lem. In this case, though, A is a nonsymmetric negattve-real matrix for both the 2-D and 3-D

problems.

The eipenvalues and eigeavectors of the matrix A associated with the spatially-

discretited Heat Equation (52.5) are well-known. Therefore, the exact solution of the associ-

asted MV can be calculated easily for any t. For the Convection-Diffusion Problem, we used

EISPACK [31, 781 in double precision on an EBM 3033 to calculate the eigenvalues and eigen-

vectors of the matrix A associated with the spatially-discretized 1-D problem of the form

(525). Since the solution of the spatially-discrctized 21-D and 3-D problems can be writted as

the tensor product of solutions of the associated 1-D problems, the exact solution of the

qptiaLly-discreized 2-D and 3-D Convection-Diffusion Problems can be computed easily for

any t also.

We used LSODES, LSODCG.VI, and LSODCG.V2 on an MM 3033 computer in double

precision to compute numerical solutions of the 2-D problems for m - S. 10, 15. 20, 25, 30 and

the 3-D problems for m - 3, 5, 7, 9. In each case, we used the BDFs with exact Jacobians

(MF-21) and an absolute local error tolerance of ATOL - 10- 3 (ITOL=l and RTOL0). We

integrated from the initial point t -0 to the output points T -V1/100, for i-0,1,2,-,10, using the

continuation option (ISTATE-2) to integrate from one intermediate output point to the next.

Beemau we did not remquire the output points to be hit exactly (ITAS=Ii), the solution vector

is computed by interpolation and, on occasion, more than one solution vector is computed per

inte]atoM step, a an be seen in some of the numerical results presented below. No optional

input (IOPT0) was asd.



We us18d the PCGPACK implementation of the Preconditioned Conjugate Residual

(PCi) method [P1 and the Precoditioned Qrthomin(k) (POR(k)) method [21, 251 for k-1.3,5

to solve the Haue algebiraic equations in LSODCO. For each of these methods, we used one

of the three PCGACK prconditioninps

L ?4OflE - no preeonditoing.

2. TCSSOR - the twylic imlmnain[W] of the SSOR ;PPeconditioning. or

I. TCDKR - the two-cyclic implementation [191 of the DKX [181 incomplete factorization.

awe generally referred to a the Modifted Incomplete LU (3MELU) factorization 1411.

For the TCSSOR preconditioning. we used a-M1j+sin(vA2)1, where A-I is the spatial
M+1

smepsize. This value of.a is ffuwa optdma [851 for the spatially-discretized 2-D) and 3-1D Heat

Equation&. Although this value of.a may not be *nea optimal' for the spatisLly-discratized

Conveotion-Diffuon Equation. it is appropriate in this case a well, since, in practice, an

optimal value of w for the problem to be sob-ed is typically not known. For the TCDXR

Premditioning. we used u-0 for all problems, as recommended by Chandra (101. In

Orthomin(k), the preconditioning was applied on the right as described in 132. In both van-

suts of LSODCO, we used a stopping criterion of the form (233) with r-3 for each iterative

linear-equation solver. However, we als set the maximumt PCC3PACK iterations permitted to

solve any one linear system to maz(100,10m).

S.LL1 Detile Numerical 1mbll for One Problem.

Detailed results for the numerical solution of the spstially-discretized 2-D Convection-

Diffusion Problem with mn-3O using LSODES, LSODCG.V1, and LSODCO.V2, respectively, -

we given in Tables 5.2L1. 5.2112Z and 52.13. The linear-equation solver used in LSODCO is

103(1) preconditioned by TCDKR. These numerical results are representative of the perfor-

mance of thew three codes on the problem considered in this subsection.

In eack table,



- T is the output point,

- ERROR is the roat-mea-.qu norm6 of the difference between the numerical and xct

suions to the problem at T,

- RU ad NQU, respectively, ar the stepoze and order used by the BDF in the last step

takes to each T, and

- NST, NFE, and NJE, respectively, are the total number of steps, function evaluations, and

Jacobiss evaluations used from the initial point t-0 to the current output point T.

Note also thaz NFE -I is the number of Newton iterations used from the initial point t-O to

the current output point T, since all but the firm function evaluation is asociated with a

Newton iteration. For LSOD, NLU, MLTFAC, and MLTSLV, respectively, are the total

number at

- LU factorintious used,

- multiplies used in the LU factorizaton, and

- multiplies used in forward and backward substitutions

by the Yale Spate atriz PackaV to solve the linear equations that arise in the numerical

integrate from-the initial point t-0 to the output point T. For LSODCG, NPRB and

ITS ,respectively, are the total number of

- precoaditloninp computed, and

- iterations used by the linear-equatiou solvets

to integrate from the initial point t,0 to the output point T. ITSMAX is the maximum

number of iteration used to solve any one system a line equatios in integrating from the

initial point t-0 to the output point T. For ach ODE solver, )Lr.T is the total number

of multiplies uad to solve the linear equations from the Initial point t-0 to the output point

T; for LSODES, MLTTOT - MLTFAC + MLTSLV.

* Tin mmme W ene one a i.wa z I - 41-
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AiM shown in thes tables is the stamp required by each of the three ODE soers. In

each cam, STRMAT is the umber of someros in the matrix A mocated with the ODE

(525). For LSODES, STRPAC is the number at once in the LU factorization comped

by YS . For LSODCG, STIPE and STRMH repectively, as the number of nonzeras

required to seor the preconditimag (hi for TCSSOR at TCDKZ and I fer NOPRE) and the

additional sMora used in the iteraive meftod ([4+IkM + 2k for POl(k) and 4M for ICM).

Fr both LSODES and LSODCG, SrTTOT is the total number of storage locations required

for the Unar equation so7vems For LSODE STITOT - 2S'RMAT + 2.TRFAC + U-M

+ 2, while, for LSODCO, STITOT - 2-STRMAT + STRMTH + STRPRE + M + 1.

The values of ERROR, KU, NQU, and NST are vry imilar for all three oodes. From

this we deduce that, for this cla of problems at Iam, the error-coutro, stepulze-selection,

and order-selection strategies in LSODE we not significantly affected by the use of an itera-

tie linear-equation solver. Although NP! aso is similar for al three codes, it is 7-109

smaller for LSODCO.V2 than for either of the other two codes indicating that the us of the

current value of A6, in the Newton iteration matrix I-, PJ reduces dilghtly the total

number of Newton iterations required throughout the integration.

The difference in NJE for LSODES and LSODCG.V1 demonstrates the superiority, for

this clsm of problems at least, of the strategy used in LSODES aver the one used in

LSODCO.VI (taken without modification from LSQDE) for determining when a Jaobian re-

evaluation is required. LSODCO.V2 uses two, rather than one, Jacobian evaluations because

we did not alter LSODE's strategy that forces a Jecobin re-evaluation every bSBP (-20)

step. If this requirement wee removed from LSODCG.V2, then it too would use only one

Jacobisa evaluation throughout the couse of the integration, as it should for this clam of

I We -o a" deuo p uIadi mi iqaS vabtrA - amp bloade aldmb., o. the 1DM 3P.. dw.
We padies eauhb equim nae e o q m w ma b iaot mi" I aeqli ady on. ewg,
dis maki Ode hnein ins d . I Se mmp aqi d by lunanve d di'm Aom'eqsi miws
do., e ta pei#, j el muabum - qinmd the pcmwdm of Imhpa te double em~e iimn
IWMgk.

U- -
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T 1ENRO mu NOV 131 IF[ sit -I"U RLYFAc IILYSLY 01=0O
0.010 0.460-0 0: a7 4-2 2 a I I I I I132 232 110

:.:so 0.5709:-03 .82D.0 3 11 IS 1 41 515176 264061996
0.00 0.4543.03 0.1360-02 3 14 Is 1 5 1016970 34S47 388

000 0.8133.03 0.1370-01 3 19 24 1 6 1222764 467406 1690170
3.160 6.1010-03 60160-41 4 24 29 1 6 1222764 569016 1791780

0.320 0.1660-03 0.3010-01 3 30 36 1 7 1426556 711270 2137626

0.680 0.4630-OS 0.131D.00 1 39 41 1 9 1634146 612660 264T026

1.210 0.12731-05 0.123301 I 36 82 t to 2037940 833202 2671182

I.S60 0.4S90-07 0.1233.01 1 37 83 1 1O 2037940 61312' 2691864

1.120 0.2100-08 0.1230.02 1 3 4% 1 11 2241738 673646 31ISS60

0.280 0.1433-06 0.1230.02 1 'S 44 1 11 2241T34 87386 3115580

Stoae. required by TINFe STINAT 80. STIFAC a 20:22. 573707 a S9306.

~93je2.l.ILS001Z solution or the spatially..diseretized 2.0 Convectooal tusiOfl

lii~iii a a mu r5id with a * 30.

T 30 ERO U NOU 137 NFE sit J E I TSIO £73707 17548 11.70

1at 0.83-3 0.290-0 2 3 11 I 3 1 25748
0.020 0.9680-0: 0.4623-02 3 11 is 8 8 24 3 !81855
0.040 0.4630-03 0.7820.02 3 18 19 5 5 33 3 519669
0.060 0.8140.03 037.1 3 19 as 6 6 52 9 603821
0.160 0.1060-03 0.1863-01 4 24 30 6 6 71 5 1062031
0.320 0.1153.03 0.2750-01 3 30 37 T 7 Its 18 1723035

060 06205 01000 1 35 44 9 9 157 to 235714
.60 019-5 .1601 1 36 43 10 10 175 is 2S96069

2.560 0.4163-07 0.1063.01 1 37 46 IC 10 Is$ to 2763434
S.12o 0.1133-07 0.1063.02 1 36 4S Il 11 211 23 3115699
0.240 0.5090-08 0.1063.02 7 I6 4S 11 11 211 21 3115699

Storage required by POOPACI: STINAT 300. STIPIt a 900. S73707 * 1163.

Tjq ~ 2 LS3CQ.TI solution of the spettally-diaeretized 2-3 Conlvention-
1T~i~n7~i102 *a 4 Sze Srid with a a30.

T 30 ERRO mu OV MST NFl Ric MEU I75707 1751481 "LTT3T0

0.010 0.8310-03 0.2T70-02 2 4 10 4 1S5 2145062
0.020 0.S7S3.03 0.4663-02 3 11 13 I 5 20 3 32489
0.080 0.4673-03 0.7360-02 3 18 16 1 6 28 3 446962
0.060 0.8183-03 0.1360-01 .1 19 21 1 7 48 4 S6609
0.160 0.6723-06 0.1670-01 4 28 27 2 9 6? 5 1030549
0.320 0.17711-03 0.3083-01 3 30 33 2 10 97 6 1670763
0.680 0.6023-05 0.138300 I 35 36, 2 12 13S 11 2026656
1.280 0.1103-0S 0.1380.01 1 36 39 2 13 155 20 2316153
2.540 0.4830-07 0.134D.41 1 37 40 2 13 169 20 2516980
5.120 0.3423-07 0.1340.02 I 36 41 2 84 194 2s 2877649

10.240 0.1660-07 0.I343.02 -1 36 41 2 IN I9o I5 2877649

Storage required by PCGPACt: STINAT 4360. STIP2E a 900. 273707 a 15963.

?So# .21-3 LO40C.12 solution or the spatially-discrotizud 2-3 Ceaveatten-ii~o an 08* $3mIrid with a a 30.
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The sequence of values of NLU for LSODES and both NIB and NFRE for LSODCG.VI

we identical indicating that both codes had the same number ofatsigUfcsut changes in kj.,

between each pair of output points, where by a *significant' chanp we mean that the magni

tue of the relative change In k, 0 is greater than CCMAX (-.3). The values of Nfl! for

LSODCG.V2 ane slightly larger than thoae for LSODCO.V1. Thus, asuming that the srepsize

sequences in all three cades were simvilar, there were same changes of hj 3 in LSOD!S and

LSODCO.VI that were not 'sisnificante. Consequently, on sane steps in LSODES and

LSODCO.VI. the factor A6. & in the Newto iteration matrix I -h 0J was not equal to the

value of h6j, used in the DDIF on that step. On the other hand, LSODCG.V2 updates the

faco j in the Newton iteration matrix whenever hj,, changes. This may explain why

LSODCG.V2 used fewer Newton iterations (NM-I) than either of the other two codes. As a

result, bG.TTOT is smaller for LSODCG.V2 than LSODCO.VI at echb output point even

though LSODCO.V2 re-camputed the TCDKR preconditioner aore frequently than

LSODCO.V1 did: the reduction in the number of Newton iterations and anodated linear-[

system le more than aeset the additional preconditioner computations. I

The fna value of MWATOT is approximately the sane for all three codes. However,

during the initial stages of the Integration, ML~TrOT for the two variants of LSODCO is

significantly les than for LSODES. For these steps, 14 is snail and the spectrum of I -k NpJ

is clustered around 1. Consequently, only a few POR iterations (lTSMAX) are required to

selw each linear system. However. as the integration proceeds and 4 grows, the spectrum of

I -A6 W exands and ore iterations are required to solve each linear system. However, for

A6 > 1 I TSMAX dos so grow significantly with k, since, as a rule of thumb. it is the rela-

tive "b of the elgevdae to one another, rather than the absolute size of the eigenvalues,

that determines the rate of convergence of most Lylov subspace methods, and the relative

sins of the elgavalues; does not change significantly, with k. for k > 1. For LSODES,

&LTIFAC Is approximately two-thinds of MLTOT, and this factor grows as the grids becoea

finer.
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Although. for this problem each code requires approzimately the sme amount of

coupusational-work, STITOT for LSODES is abou tour times the value of STRTOT for

either variant of LSODCO. Moreover, this factor grows ezposentalaly as the grids become

fine. In additlon, note that, for LSODES, STrIAC is about tve times as large as STRMAT.

On the other hand. for LSODCG with POR(1) prew. ditioned by TCDIR (or TCSSOR).

STIE is about one eighteenth of STRTOT, since the TCDKR (or TCSSOR) precondi-

tiae requires only one M-vector of storage.

522. A Semamm at the Numercl Results far All the Ted Pnlems.

We present below a summary of the numerical results for LSODES and LSODCG.V2

using the PCGPACK linear-equation solvers PCR and POR(k), k-1,3,5, preconditioned by

NOF/E, TCSSOR, and TCDKR for the four spatially-discretized parabolic problems on a xm

grids, m.S,10JS..., for the 2-D problems, and - xm xn grids. m-3.5.7,9, for the 3-0 prob-

lems. Since the numerical results for LSODCG.V2 are similar to, but generally better than,

thoe for LSODCG.VI. we have not included a summary of the numerical results for the

letter code.

The total number of PCOPACK iterations, ITSTOT, and the ma,mum number of itera-

tis for any one solve. ITSMAX. used by LSODCG.V2 throughout the integration are listed

in Tables 5.2.-1 and 5222 and Tables 5223 and 522.4, respectively. Graphs of m against

ITSMAX on a log-log scale for POR(1) preconditioned by NOPRE, TCSSOR, and TCDKR

we given in Plots 5322.1 and 5222 for the two 2-D problems.

The total number of multiplies, MLTTOT, used by LSODES and LSODCO.V2 to solve

the linear algebraic systems throughout the integration are lsted in Tables 52.23 and 52.2.6.

Graphs of m against MLTTOT on a log-log scale for LSODES and LSODCG.V2 with PO(1)

precodittioned by NOPR and TCDKR are given in Plots 5223 to 52..6 for all four prob.

The total storage, STRTOT, required by the linear-equation solvers in LSODES and

.........
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LSODCG.VZ for the 2-D and 3-D problem Is given in Table 5.2.7. (Bach liner equation

solvr requires the ame smmt of stora, for both of the 2-D problem a veil as the -

smoun at storp for both of the 3-D problem.) Graphs of m against STITOT ona lo-log

male for LSODES and LSODCO.V2 with POR(1) preconditioned by NOME and TCDKK (or

TCSSOR) ne Slw in Plots 2.2.7 mad 52.2.2 for the 2-D and 3-D probles.

An entry of Ow in place of a number in them tables indicates that, during the course a

the integration, the associated iterative linear-equation solver failed to converge in the mu-

imnum number of iteratIons allowed, mama00,10m). Only PCR with no y...oditloning failed

to coarre, and it faded = the spetially-dlscretzed 2-D Convect.on-Diffusion Problem with

a-l10 and 15 only. It is in fact surprising that PCR did not fail on more of the Convection-

Diffulon Problems, sance the linear systems maociated with these problems are nonsymmetric

and PCR is not (in theory at least) applicable to sach systems.

Consider the remsa for LSODCO.V2 Airs. For these tea problems, POR(1) is the moat

effeth of the four bas PCFGACK methods oaidered. For a Smen problem and proc..-

ditloniq. MLTTOT for POR(k). k-1,3,, generally increases with k ev though ITSTOT

often deereas with k: the reduction in the number of iterations is more than offset by the

additional work required per itenation as k increases. As mentioned above, PCR failed on

two problem ad is not guaranteed to converge for any nousymmetric linear system. Further-

more, for the symmetric Hear Problem, PCR is not sipifcantly more effcient than POR(1).

On the ontrary, when pCronditioned, PCR frequently requires more multiplies than POR(1)

vince, en though PCR may require fewer iterations, fewer multiplies an required per itera-

don to precondition 10R(I) on the right than to precondition PCR symmetrically. u is

required for the latter method.

Of the three precoanditoninps, TCDKR is nearly always the most effective in terms of

both multipliues ad iterations required. The effectiveness of preconditioning is much me

pronounced for the nousymmetric Convection-DIffusion Problem than for the symmetric

Ha Poblem. In fact, for the latter class of problem, M.LTOT for TCSSOR is frequently



- 45 -

Z-J1 problew- I-. Frool
method a a

S5 10 is 20 95~rum agent -Tr 1r j¥ 19 1 r- 2 IN SH d A 13; 1

PCI TCSSOI 64 138 198 247 300 398 67 66 103 125
PCR TC013 69 92 110 160 166 197 34 49 71 82
POt 1:; lOPe 96 275 269 17 535 652 42 a5 132 197
POE 8 1TCISO 67 118 201 252 306 360 45 64 103 123
POE 11 013 50 98 114 166 177 209 36 52 73 a5

PO 1.3 NOPeZ 96 2M5 269 I11 535 652 42 a5 132 197
POE 183 TC3O 65 128 189 243 296 359 44 65 102 122
PON 9a3 TCOK3 69 95 111 163 169 203 34 51 71 86
PON g.s lOPe 96 275 269 611 535 652 62 85 132 197
POR K15 TC3O 64 127 191 263 291 351 44 65 102 122
POE 1.5 70K1 Iq 96 10q 19 165 143 ]a $1 71 8

Teble 5.2.2.1: The total number of PCGPACW Iterations. TSTOT. used by LSODCG.V2
throughout the numerloal integration of the spatlally-dlacretized 2-0 and 3-0
Neet Problem on a zmo &ad 1elz1 grid. respeotively.

4-0j froalts J-V eroo~Le

Method a a

5 10 1s 20 25 30 9

PC& ?CSSO 63 136 203 269 329 366 66 62 102 116
PCR 7CD1R 67 90 167 150 178 192 36 69 66 83
POE Z.l lOWEZ 121 293 390 556 609 983 69 121 167 240
PON 9*1 TC3303 T0 139 183 260 316 356 45 66 99 125
PON Kul TC1 69 92 150 139 177 196 36 69 67 81
PoE 1.3 OPrt 131 279 412 559 768 860 66 11 139 23,
PON K83 TC3303 69 126 190 251 322 397 66 63 100 1;1
POE 1.3 TC1 49 08 147 136 176 207 35 68 67 80
POR K.5 lOPtE 124 282 396 563 773 846 59 107 138 230
PON 1.5 TCSOR 69 123 187 275 306 364 46 63 99 110
PON Ka. 7CD1 68 86 146 136 172 206 35 68 67 80

Table 5.2.2.2: The total number of PCGPACZ Iterations. !TTOT. used by LSO0CG.V2
throughout the numertal integration of the spatillly-diacretized 2-0 and 3-0
Conveotion-Otrtuaton Problem oan a al and linim grid. respectively.

Srroocm reo.
Method a

i 0 is

PCE TCS30 8 II 14 18 21 26 6 8 11 13
PC* 3C033 6 10 12 15 18 20 4 7 9 10
POE Kal lOPEt 11 20 25 33 62 50 5 7 16 2o
PO g1l TC3300 10 13 16 17 23 26 6 1 10 12
PON Kai TC001 7 11 14 17 23 23 a 7 10 12
P as 183 -OPIE it 20 29 33 42 so 5 7 |4 20
PO 1.3 TCSSE 0 II 16 19 22 23 6 8 I1 12
POR 1.3 7C0K1 6 9 14 17 20 22 6 7 9 11
FOn 185 VOPEt 1  I 20 2 3 2 50 5 7 l 201
PON 1.s TC330t 1 11 1 a 1 21 29 6 3 11 12
PON K. TCR 1 6 9 12 IS 18 21 6 7 9 12

Table 9.2.2.3: The meuimum number of PCGPACK iteretiona. TSHA1. used by LSOOCO.V2
throughout the numerical Integration of the spatialiy-dtlaretized 2-3 and 3-3 Mest
Problem an a am and Names $rid. respeetively.
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ethod S 10 is

r5 0 15 20 ,25 30

PCN TCS02 I I1 to 27 19 24 7 5 11 II
PCs TCDC 6 11 16 16 18 22 4 7 9 1
PO: :1 MOPI 17 43 52 57 80 236 --I 23 30 42
POE 1.2 CSSOR 7 14 17 19 21 25 7 9 10 12
POE Te 7ct1 6 21 15 to i5 25 6 7 9 12
PON 1.3 NOP11 is 42 63 86 116 126 12 21 26 35
PON 9s3 TC3SO1 T 11 I5 2? 23 25 6 5 21 2
FOR go? 7C0K3 6 10 15 16 Is 21 6 6 9 11
P03 1I5 8Plr 16 64 52 75 113 126 9 1825 33
PO 19 TCSSO 7 10 16 21 20 23 6 a 10 11
POn 1.5 TCK3 5 9 14 15 16 19 6 6 9 11

Table 5.2.2.4: The mezilum number of PCGPACZ Iterattos. IT$MAX. used by LSOOCG.72
throughout the numerial integration of the patlally-disoretisd 2-0 and 3-0
Convecton-Oirtuston Problem on a man and use grid. rOSpoottvoly.

~ roo~.. roo~em
method _ _ a

5 10 i 20 25 !0 3 ,

PCI IOPRE 27605 303220 675154 1249272 3700203 6466182 155883 14115 605332 1869686

PCX TC3301 60036 334915 1069556 2355255 68810 7609396 37267 255252 1072048 2763856.
PC TCI 32538 237926 636751 1412001 2587342 4366975 29664 205755 795630 2951622

PO Kai NOPrE 2680 325721 726934 1999272 6006328 7035152 16396 150990 6929 200922 
POt C1 TC330 26988 190201 725462 1619364 3071298 5199650 22552 154065 672022 1717005
POn K1. TCDE 2155 163218 628368 968413 1523366 3090979 1 15091 135052 505784 1256206 0

Pat 1.3 mOPVi 33661 429857 968942 2719163 5634620 10003581 I7706 173550 781429 2545302

PON 1.3 T70050 28592 235738 816011 1921196 3125054 6585355 23542 169736 742194 2925460

PON 1.3 MAN13 22375 17256 412556 1102094 2061592 3626176 19363 141172 54091a 1656085

PON 1.5 MOPsW 35966 9a5 1140646 3307659; 6955540 12555727 17790 153326 5 6979 29019.46

PON 1.5 TC3303 29160 265935 893518 211869 413514 7615651I 2788 174626 777176 2025S20

[POP Kai 79013 22679 183217 692245 1167525 2179765 3885219 .19?13 16-1625 5625148 14'.!25 h

Table 5.2.2.5: The total uaber ot *ultiplLio. NLTTOT. used by LSDS and L300CG.V2 to solve the linear

ageorale systems throughout the numerical integration of the patially-diaoretized 2-0 and 3a 0 nea
Problem on a gas and manse grid. respecti ely.

Mo&hod L f?0C

5 10 15 20 25 30 1 5

PCR Mo*rN 3296 1-032742 5325? 6676507 2343& 212782 23606 214169C
PCI TC3301 39919 329371 1092551 2559297 4065692 7772132 36517 261945 1062981 25385817
PC 7C01 31804 233563 833065 150899 2767'14 426525 31636 205176 756072 1971107

POE 1.: IOPeI 35901 346365 1069339 2656349 6556076 10572603 25336 209387 79719 2272581
PON K.1 TC$$0I 28191 223160 662052 1670319 3170260 5162792 22664 156626 6467830 1765685
Pot %*1 TC9R3 21083 154627 555866 926639 1827538 2877669 19918 128596 674623 12058961.

PCR 1.3 tOPIE 5706 547651 1519823 3768229 5209009 1336905 27938 236953 831"92 3026822

POE C.l TC3303 30099 228667 620675 195268 40S5S4 7308315 23626 165056 129959 173695

Pon g.! TCOK 22451 164412 6!2610 1043705 2120656 3679020 19894 133585 512533 1?0#460

POE 1.5 MOVIE 5tile 543576 179427 6756604 10467203 16729712 27066 255015 ;S3132 522525
PC8 1.5 705S30 30753 237660 573010 2458637 4365526 7676620 23952 16919 753790 1795587
P: Ki. TCO13 220-9 167041 673015 2099601 227i!42 ?9793 i 0966s 1356666 5 101' '6-12.

Table 5,2.2.6: The tetal number of multiplile. MLTTOT. ueed by L$O03 and LSO3CG.V2 to so~ve the linear
aigerle syatems throughout the numerical integration of the spoteally-disaretlzed 2-3 and 1-0
Convee~ltnoOiffueion Problem es a man and ame. grid. rspectlielVy.

methodl5 00 25 305 61

L3~D~ 04 440 254 106~ *,4

PC X NOVtl 337 1422 3257 5 62 9177 ;3262 07 2077 593 1 '12G1
PCs 7C0il 361 2521 361 6261 9501 261 633 2201 273 13609,
POI 1.110Pll 319 16N 3709 Cl664 1069 15064 663 2129 6619 143"IVOl 1.1 70513 613 2723 3933 7063 21053 15963 659 2653 6961 15069

POR i3 oPeU 693 2026 463 8525 193 18666 575 2833 ?995 17261
POE 3.3 MAN13 517 2127 6537 54? 23557 19167 601 2957 8337 17959
POE 1.5 IOPtI 597 2632 5517 9852 1537 222?2 657 337 97 20-- 2
P03 15 73C3 2' 255 571 102!1 26061 2!171 713 3661 0713 29600

T~aLe 5jj.2.: Total sterage. 7TITOT. requted by the ilneo-queaton solvers in LSODIS and
rsince.4tior t* 2-0 and 3-0 preolega On 0 gls end Masa grid. respectively.

All"
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ii 2log (STRTOT)
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larger than for NOPRB for the same basic PCGPACZ method, sn the additional work

required to precondition is not offsct by a suficient reduction in the number of PCGPACK

iterations used throughout the integration. This is not the case for TCDKR. Although

NOPRE required fewer multiplies than TCDKR on some coarse grid problems, the difference

is maver sigifficaut. On the other hand, TCDKR is frequently substantially more effective

than NOPRE in term of both multiplies and iterations required by PCGPACL Although

UTSMAX for TCDKR and TCSSOR an frequently close, ITSTOT for TCDKR is usually

agsiffantly Iom than far TCSSOR, indicating that TCDKR is substantially more effective

than TCSSOR on the large number of linear algebraic systems for which h. is small and the

spectrum of I-k. &J is clustered around L

From the graphs of ITSMAX in Plots 522.1 and 522.2, it can be seen that not only do

the preconditioned POR(1) methods require fewer PCOPACK iterations than POR(1) with no

precoanditioaing but also the difference grows exponentially with m. Although not shown

her, graphs for ITSTOT ae similar, but, in this cae, TCDKR can be seen to be substantially

more effective than TCSSOR. Graphs of MLTTOT for POR(1) preconditioned by NOPRE

and TCDKR are shown in Plots 5223 to 526. Note that not only is MLTrOT significantly

snaller for TCDKR than NOPRE, empt on the coarsest grids, but also the difference

between MLTrOT for these two preconditionings grows exponentially with m.

Now cmpare LSODIS to LSODCG.V2 with POR(1) preconditioned by TCDKR.

Tables 53 and 522.6 and Plots 5223 to 52.2.6 reveal that LSODES requires fewer multi-

plies than LSODCG.V2 for the 2.D problems, except on the finest grid (m-30). However, the

difference decreases with m and an extrapolation of the graphs in Plots 5223 and 522.5 sug.

Vats that LSODCG.V2 with POR(1) preconditioned by TCDKR would become increasingly

m efficient than I.ODES for these two 2-D problems o finer grids. For the two 3-D

problem with m-9, LSODIS requires more than ten timues as many multiplies a

LSODCO.VZ to solve the inear algebraic equations throughout the integration. Moreover,

be Plots 32.4 ad 522.6, it is clear that this factor rowe exponentially with m.
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This suppaor ad extends our earlier observatiom bused on theoretical estimates of the

ompsttioual-work in 54 that iterative methods re aigniflcantly more efficient than direct

methods for soheng the sptlfsly-discreized 3-D Hea Problem.

Table 522.7 sad Plots 522.7 and 522 show that, for both the 2-D and 3-D problems,

STRTOT is 9ailntlyag for LSODES then LSODCG.V2= for the 2-D problems with

ma,,0, LSODES requires aPi 1aey 33 times as much storage as LSODCG.V2 and, for the

3.0 ptablems with m9, LSODES requires approximately 6.4 times as much storge as

LSODCO.VL. Moreover, for bo the 2-D and 3-D problems, this factor powsc aonentialy

with m.

L3. SIff Dtsat Problems.

We used LSODE, LSODES. LSODCG.VI, and LSODCG.V2 an an MM 3033 computer

in double precision to solve the 30 Stiff Detest Problems [27, 29. Although these problems

awe ai ar8e, they do test the robustme of the inezact chord-Newton method and the asoci-

vted iterative linear-equation svers in the two varmat.s of LSODCG.

For each of the four codes, we solved the Stiff Detest Problems using the BDFs with

oest Jacobians (MF-21) to an absolute local error tolerance of ATOL - 10-2, 10-4, 10', and

10-4 (RTOL O and ITOL-1).

For LSODCO.VI and LSODCO.V2, we used POR(S), the PCOPACK [21, 25 implemen-

tadon of Orthoinia() [120, 24J, to solve the linear algebraic systems of equations that arise in

the inxt chord-Newton method. We did not precondition POR(S) because, for many of the

StDe u Probles, an incomplete factorization would actually yield the ext factorization

of the assoiated Newton iteration matrix and. consequently, POR() would generate the

et soludti to the iUneca apbn equations in one iteration.

We used a stoppiag criterion of the form (2.3) with r - .1, 25, and .5 for the solution

of the inmar apbra systems wising in the ineat chord-Newton method. Since the Stiff

Dtwat Problems ae small and the tolerance for the linear algebraic systems is l, we glowed



a mazimum at5 3DFOR(S) iterations to solve each linear algbraic system

We present ou results for LSODH and LSODCG.V2 only. As in the previous section,

the results for LSODCCI.V2 ase generally beifer than those for L.SODCG.V1. and the stra-

tegics used in LSODCG.V2 awe closer to those in LSODE than those in LSODES.

In Tables 53.1 and 532. respectively. we ;pesent the Onormalized number of function

evaluations and Jacobian evaluations required by MSODE and LSODCG.V2 with r - .1, 25,

and .5 to solve each of the 30 Stiff Detes Problems to an absolute global error tolerance at

Ted - 10-2, W-4. and 10-4 at the end-point of the integration; in Table 533, we prsent the

Imormalized' total number of FOR(S) iterations required by LSODCG.V2 throughout the

integratin. Then normalized statistics were calculated by a now version of the Stiff Detem

Progama which, as described in [P41 first performs a leos square Ait toh

pog~bd rrjg-l4C )-LrIog(4TOLjf

for C and E. where, in this ase, A7O4s - 10-2, 10-, 10-4. and 10- and NTOL -4. The Stiff

Detes Progra then* performs a pkecwis linear interpolation on the actual recorded values [
of the costs to solve the IVP at ATOLj versus the corresponding expected global accuracy

Ted - C -ATOL' to arrwe at the normalized costs for an absolute global error tolerance ofHI

Tol. (A consequence of this procedure is that the normalized function and Jacobian evalua-

dons ame negative for one problem.

A aeor 'e may occur a an entry in place of a number in these tables. A '- indi-

cates that Stiff Detest could not calculate the normalized statistics for this problem and toter-

as bond upona the actual global errors incurred. A " indicates that the method being

tested (1.50DE or LSODCO.V2) could not solve the problem at that tolerance, and a '" mdi.

cas* that Stiff Detest could not solve the problem at that tolerance. to addition. the 12 prob.-

Issm marked with a 'v have a Jaoobian. that is not negative-real over some subinterval of the

rg of integration.

From the tabls, we se that the number of function and Jacobian evaluations typically
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TOOzL*.3.2: loealied Jaooes aa wations for the Stiff Detest Problems.
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?a I - I75 9 • 92 11 1; 153 14 ,Ij

Tool* S.1.3: ervall ed PCOGACX Iteratlons fTr the StifT Detall Problems.

in=reuu with r. For the Jacobin evaluati-ns, the incre is generally not aiplInew, but,

for the function evaluations, the increase is frequently 10% or more fr one value of r to

the nest. On the other band, the number of POR(S) iterations typically decreses with r by a

factor of 10* or more fr one value of r to the net. Hence, if a POR(5) iteration b less

eapensive than a function evaluation, then, based upon these results, ral would usually be

the ms cos effective of the three values considered. On the other hand, if a POR(S) item.

tion is substantially more ezpeusve than a function evaluation (as b the case for the problems

In the previous subsection), then, based upon these results, r-3 would usually be the most

o effective of the three values considered. Thus, the choice of r Is dependent upon the

elm of IVPs aolved.

Eucept for problem CS, which ha. a Jacobin tht Is not nqativreal, LSODCO.V2,

with each of the values of r considered, used fewer saoblan evaluations thn LSODE an all



problem that were solved successully by both codes. Moreover, for three lVPs having a

aeptve-umIJacobian, the number of Jacobian evauations required differs by a factor of 2 to

I. This superiority of LSODCG.V2 ame LSODB is a reult of the stategy used in

LSODCO.V2 described above that permits it to update the scalar factor A60, in the Newton

teaonmatriz I -&J whenever h~~changes without re-evaluating the Jacobian, J. If we

had also remove from LSODCG.V2 the requirement inherited from LSODE that the Jaco-

big. be re-evaluated at leot once every UE ("20) step, then LSODCG.V2 would have

used eves feer Jacobian evaluations.

Now consider the function evaluations required by LSODE and L3ODCO.V2 with r-I

to solve the Stiff Detest Problems.

L30DCO.V2 failed to solve 4 of the Stif Detest Problem (A2, D3, 34, FS) at

Tel - 10-2. Each of these problem has a Jacobian that is not negalve-real over some subin-

terval of the range of integration. However, except for problem FS at 7WJ - 10-",

LSODCO.V2 required fewer funtion evaluations than 1.50DE for these problem at

Ted - 10-4and W-4*

Of the remaining problems, LSODCG.V2 with r-I used substantilly fewer function

evaluations than 1.80DB far 7 of the Stiff Detest Problem (Al, Ai, C1. C3, Dl. D2, E3).

Again, this may be due to LSODCO.VTs updating the scalar factor kk in the Newton itema

tion matri whenever A6 ehanges resulting in a more accurate Newton iteration matrix and a

awre rupid convergence of the Newton iteration.

1.8001 and LSODCO.V2 used approximately the same number of fustian evaluations

an 11 at the Stif Detest Ptoblems (A3, M2,M ,4,35 CZ, D5. D6. 12, M3 FS). It is worth

seoin that the clas problem an of the form y' -A y, where A ia a coustant matris: with

cmpla eiganvulues and. consequently, A is far from being symmetric.

1.0DE used sebstantially fewer fustian evaluations than LSODCG.V2 on 7 problem

(01, C4, CS, D4, 21, P1, P2) sec of which has a Jacobian that Is not negative-real over some

sablatervail of the rasp of Integration.



Therefore, smept fmr these problem having a Jacebisa that bs not negative-real, theus

of au -Iv Uneoapqation solver did not cams the pedofmce of LSODCO.V2 to

deteriarate relative to the unmuodified code LSODI which incorporates a disre linear

equatim salvr. &a fad., LSODCO.V2 perform as wall a or baoner than LSODH on all the

Stif D~ts Ptabham for which LSODCG.V2 is applicable.

One tal po is worth noting. From Tables 3.1 and 533, we noe that, for many of

the Stiff D~ss Problems, purticularly at the um stringent tolerances, an average of tess than

oe FCOPACK iterstion is required per inaract chord-Newton iteration. That *s for nmy ot

the ineact chord-Newtont Iteration%, the Initial guess -F (y.) for y.1 *tyn tisfies. (233) and

no further PCOPACK iterstiam es required. Hemnce, when using an iteratv lnear-equation

solver In a oiff-ODE code in this way, we automatically obtain the benefit of the urse of an

inmxpensive pretor-corrector iteration when a more expenstwe Newton iteration is not

required. Moreover, this appear to have no deleterious effect upon the overall performance

of the stiW-ODE solve.

C Canmels.

Both the theoretical and numerical results presn ted in the preceding two sections show

that the anof atterache hiear-equation solves. in stif-ODE codes has the potential to

improve the efficiency - in term of both computational-work and storage - with which a

tieien elm at stiff 1W. hav~ng large saurm Jacoblana an be solved. Moreover, thase

met demonstrate the importance of premstoul for Kzylov abupa methods used in

The numerWa ramks for both the linear ad nonlinear WVY show that the stopping cr1.

me. (23-3) for the hissaet chord-Newton Iteration works well in practice for r (1[1,4J. This

ipuwthe claM tha the hsear equatiee that Ubem In stiff-ODES solver. ueed not be sove

very meeUanSly. bMoroe, the initial gang -y Wy) for the aolution y'l *I-yk of the hiear SyW-

tess provedl to be quits effeethve is practice, particularly during the initial transient where the

1" 6 at most mildl smif.



Updating the scalar factor A6 ~.in the Newton Iteration matrix I -A6 AJ whenever A6 0,

changes without re-evaluating J.* the approximation to the Jacobian, reduces the number of

Newton iterationa and associated function evaluation required throughout the cou of the

numuuical integration with littl, added cost in a tff-ODE code incorporating an iterative

ilame.quation solves. Furthermore, this strategy of updating A6 A. whenever it changes faci-

htates the decision when to re-inate the Jacobian and, thus, helps to avoid wasted

Iomptatonal-work. More generally, n mentioned in V.2, the removal of the constraint

imposed by the necessity to avoid refactoring 1 -hj.NJ in a tiff-ODE code employing a direct

linar-equation solver my lead to other benefits in the choice of formula, strategies, and

he asisfor a sti-ODE code incorporating an iterative linear-equation solver.

Most Importantly. the numecrical results demonstrate that stiff-ODE cdsIncorporating

iterative Una-equation solvers do noe suffer a loss of robustness on those IVP& for which the

Newton Iteration matrix WA Is positive-real throughout the cause of the numerical Integra-

tion. Note, though, that this restriction on W.' is imposed by the Iterative technique we chose

to solve the liner systems: the restriction is not characteristic of all ariff-ODE codes mnor-

porating iterative linear-equation solvers, In paticular, as mentioned earlier, there exist itera-

tive linear-equation solvers that are guaranteed to converge to the solution of the Newton sys-

ta (2.2.) if all the elgenvalues of WA, lie in the right-half complex plane. As we argued in

12.1. if W.1 does no satisfy this last restriction, then the stepsize Is almost =urely too Iarg and

should be reduced until this last restriction is satisfied to ensue a reliable numerical integra

tion.

Hence, it appears possible to develop a stiff-ODE code incorporating an iterative linear-

euaion solver that, for a broad clam of IMs is as robusts a simler stiff-ODE code incor-

porating a direct linear-equation solve, but mane efficient than the latter code for a

ignificant subclass of problem having lag spare Jacoblans. We plan to continue to pursue

this Investigate In the future.
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